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Machine reading comprehension (MRC) tasks have attracted substantial atten-

tion from both academia and industry. These tasks require a machine reader

to answer questions relevant to a given document provided as input. In this

dissertation, we mainly focus on non-extractive MRC, in which a significant per-

centage of candidate answers are not restricted to text spans from the reference

document or corpus. In comparison to extractive MRC tasks, non-extractive MRC

tasks contain a significant percentage of questions focusing on the implicitly

expressed facts, events, opinions, or emotions in the given text, requiring di-

verse types of world knowledge (e.g., commonsense, paraphrase, and arithmetic

knowledge) and advanced reading skills (e.g., logical reasoning, summarization,

and sentiment analysis). This dissertation presents our work in exploring new

challenges and approaches for non-extractive MRC. Specifically, on the challenge

side, we create the first MRC dataset that focuses on in-depth multi-turn multi-

party dialogue understanding and the first free-form multiple-choice Chinese

MRC dataset that requires various kinds of prior knowledge. On the approach

side, we propose three general reading strategies and a method of utilizing con-

textualized knowledge to improve non-extractive MRC. We find our datasets to

be very challenging for reading comprehension systems and our approaches to

be empirically effective on representative non-extractive MRC tasks.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Natural Language Understanding (NLU) is one of the most challenging areas in

the field of Artificial Intelligence (AI) (Shapiro, 1992). This dissertation tackles

a central problem in NLU: how to teach machines to read a document in a

human language and answer comprehension questions, i.e., machine reading

comprehension (MRC). The problem of MRC is important, not only because

the MRC tasks can help the research community measure the progress of NLU

and general AI but also because the MRC techniques are essential in real-world

applications such as building AI-powered virtual assistants.

There are many MRC tasks and various ways of categorization. At a high

level, we can divide MRC tasks into three categories based on the answer type:

extractive, abstractive, and multiple-choice.

(a) Extractive MRC refers to the task where the answer is a short span that can

be extracted from the document. Table 1.1 (a) demonstrates an example. A

major limitation of extractive MRC is that, for many questions, answers

cannot be represented as a span of the document.

(b) In response to the limitation of extractive MRC, answers in abstractive

MRC tasks are human-generated texts, which do not have to be spans

of the document, as shown in Table 1.1 (b). However, the evaluation of

abstractive MRC is non-trivial due to the variance of possible answers.

Moreover, since annotators tend to copy spans as answers directly, the
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(a) Extractive MRC

document: In meteorology, precipitation is any product of the condensation of atmospheric water vapor
that falls under gravity. The main forms of precipitation include drizzle, rain, sleet, snow, graupel and
hail ...
question: What is another main form of precipitation besides drizzle, rain, snow, sleet and hail?
answer: graupel

(b) Abstractive MRC

document: New Jersey is a state in the Northeastern and mid-Atlantic regions of the United States. It is a
peninsula, bordered on the north and east by the state of New York ...
question: Where is New Jersey located?
answer: In the Northeastern and mid-Atlantic regions of the US

(c) Multiple-Choice MRC

document: Dirk Diggler was born as Steven Samuel Adams on April 15, 1961 outside of Saint Paul,
Minnesota ... He was discovered at a falafel stand by Jack Horner. Diggler met his friend, Reed Rothchild,
through Horner in 1979 while working on a film ...
question: How old was Dirk when he met his friend Reed?
options: A. 18 B. 16 C. 17 D. 15
answer: A

Table 1.1: Examples adapted from representation MRC tasks: (a) SQuAD (Ra-
jpurkar et al., 2016), (b) CoQA (Reddy et al., 2019), and (c) MultiRC (Khashabi
et al., 2018). Clues to the answers are underlined.

majority of answers are still extractive in many of these tasks (Kočiskỳ et al.,

2018; Reddy et al., 2019).

(c) In multiple-choice MRC, multiple answer options are provided along with

a question, and the goal is to choose the correct option(s). Table 1.1 (c) shows

an example. Compared with abstractive MRC, we can adopt objective

evaluation criteria such as accuracy to evaluate system performance more

easily (Clark et al., 2016; Lai et al., 2017).

In this dissertation, we primarily focus on non-extractive multiple-choice

MRC tasks, in which a significant percentage of answer options are not extractive

text spans. Compared to questions in extractive MRC tasks, besides surface

matching, there are various types of complicated questions such as math word

problems, summarization, logical reasoning, and sentiment analysis, requiring
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document: How quickly can you count from one to ten? Do you use ten different words to do it? Can
you do it in English, or do you have to use your first language? Do you count on your fingers? Many
people think that numbers and math are the same all over the world. But scientists have discovered that
it is not true. People in different parts of the world use different ways to count on their fingers. In the
United States, people begin counting with their first finger, which they extend or stick out. They then
extend the rest of their fingers and finally the thumb to count to five. Then they repeat this with the other
hand to get to ten. In China, people count by using different finger positions. In this way, a Chinese
person can easily count to ten on only one hand. Besides ways of finger counting, scientists have found
that cultures and languages are also different when it comes to numbers. Some languages have only a
few words for numbers, and others have no words for numbers. A group of scientists studied aboriginal
people in Australia. There people don’t have hand movements to stand for numbers. They don’t even
have words for numbers. However, they are still able to understand different ideas about numbers. In a
similar study, researchers from the Massachusetts Institute of Technology discovered that people of the
Piraha tribe in northwestern Brazil don’t have words for numbers such as “one” or “three”. They are not
able to say “five trees” or “ten trees” but can say “some trees”, “more trees”, or “many trees”. Professor
Edward Gibson said that most people believe that everyone knows how to count,“ but here is a group
that does not count. They could learn, but it’s not useful in their culture, so they’ve never picked it up.”
Although all humans are able to understand quantities, not all languages have numbers and not all people
use counting. Number words in a certain language are a result of people needing numbers in their daily
lives. Now we know that people have different ideas about numbers and math, too.
question 1: The writer begins with the four questions in order to .
options: A. make a survey B. interest readers C. tell a story D. solve math problems
answer: B
question 2: What is the main idea of the passage?
options: A. People from different cultures have different ideas about numbers and math.

B. Chinese people can count more easily on their fingers than Americans.
C. In some aboriginal cultures, people don’t even know how to count.
D. Some languages don’t have number words because people don’t need numbers.

answer: A

Table 1.2: Examples of various types of questions from a non-extractive MRC
dataset RACE (Lai et al., 2017).

advanced reading skills and prior world knowledge. For example, answering

the question in Table 1.1 (c) requires math knowledge; answering questions in

Table 1.2 requires commonsense knowledge and summarization ability. Due to

the complexity, the problem of answering such challenging non-extractive ques-

tions has not been studied systematically until the 2010s (Richardson et al., 2013;

Lai et al., 2017), despite that the study of MRC dates back to the 1970s (Charniak,

1972; Lehnert, 1977; Chen, 2018). Since 2017, the problem has received much at-

tention, and rapid progress has been made, including our efforts that we present

in this dissertation. See the progress on RACE (Lai et al., 2017), a representative

non-extractive multiple-choice MRC dataset in Figure 1.1 as an example.
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Figure 1.1: The best results from the official leaderboard of the RACE dataset (Lai
et al., 2017) since its release in April 2017.

The progress in this field is mainly attributed to (i) the creation of a growing

number of non-extractive MRC datasets and (ii) the development of various

machine learning-based approaches for non-extractive MRC. This dissertation

presents our efforts in both aspects. In terms of (i), we construct high-quality

human-labeled datasets to support the study of two underexplored directions: di-

alogue comprehension and Chinese comprehension. As for (ii), we develop three

general reading strategies and a method of utilizing contextualized knowledge

to improve non-extractive MRC. We describe the corresponding contributions in

more detail in the next section.

1.2 Contributions

Reading strategies for machine reading comprehension. Inspired by reading

strategies identified in cognitive science, we propose three domain-independent

reading strategies aimed to improve non-extractive machine reading comprehen-
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sion. Our proposed strategies lead to substantial performance improvement over

previous best results on seven representative non-extractive MRC tasks from

different domains. We describe this work in detail in Chapter 3.

Dialogue-based machine reading comprehension. We construct the first

dialogue-based multiple-choice reading comprehension dataset. In contrast

to previous reading comprehension datasets whose source documents are gener-

ally drawn from formal written texts, our work is the first to focus on in-depth

multi-turn multi-party dialogue understanding, which is likely to present signifi-

cant challenges for reading comprehension systems. We investigate the effects

of incorporating general world knowledge and dialogue structure into rule-

based and machine learning-based MRC models and show the effectiveness

of these factors, suggesting a promising direction for dialogue-based reading

comprehension. We present this work in Chapter 4.

Chinese machine reading comprehension. To promote the development of

MRC techniques for Chinese, we introduce the first free-form multiple-choice

Chinese machine reading comprehension dataset that requires knowledge gained

from the given document as well as prior knowledge to answer questions. We

present a comprehensive analysis of the prior knowledge (i.e., linguistic, domain-

specific, and general world knowledge) needed in this challenging dataset and

study the effects of distractor plausibility and data augmentation based on

translated relevant datasets for English on model performance. This work is the

subject of Chapter 5.
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Contextualized knowledge for machine reading comprehension. We explore

the influence of verbal-nonverbal knowledge on MRC tasks, especially those

that require tacit general world knowledge. We focus on interrelated verbal-

nonverbal pairs from film/TV scripts and propose to implicitly represent the

relation between the verbal and nonverbal messages by situating them in a

context. Specifically, we extract contextualized knowledge consisting of a verbal

statement, its associated nonverbal information, and, as context, the text of

the scene in which they occur. To enhance knowledge utilization, we propose

a two-stage fine-tuning strategy to use the large-scale weakly-labeled MRC

data constructed based on one type of contextualized knowledge and employ a

teacher-student paradigm to inject multiple types of contextualized knowledge

into a student machine reader. Experimental results show the effectiveness of

our method. We present more details in Chapter 6.

1.3 Roadmap

The rest of the dissertation is organized as follows. In Chapter 2, we provide

relevant background and related work, covering the history, tasks, and mod-

els. In the next four chapters, we tackle previous representative non-extractive

MRC tasks (Chapter 3), present new challenges to MRC systems (Chapter 4 and

Chapter 5), and present promising directions and approaches for tackling the

presented challenges (Chapter 4 and Chapter 6). Finally, in Chapter 7, we sum-

marize the contributions of this dissertation and outline possible future research

directions.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter presents an overview of the background and existing reading com-

prehension tasks and models relevant to the work presented in this dissertation.

We further discuss related work in greater depth and broader context as needed

in the corresponding chapters.

2.1 History

The study of machine reading comprehension dates back to the 1970s when

researchers already worked on computer-implemented story comprehension

models (Charniak, 1972) and recognized answering questions about paragraphs

of text as a task criterion for evaluating language understanding systems’ reading

skills (Lehnert, 1977). However, the field was mostly neglected in the 1980s

and early 1990s (Chen, 2018). Later, the dataset created by Hirschman et al.

(1999) spurred a small revival of interest, followed by the ANLP-NAACL 2000

Workshop on Reading Comprehension Tests as Evaluation for Computer-Based

Language Understanding Systems. The dataset is small in scale, and the systems

are mostly rule-based. In the 2010s, researchers started to formulate MRC as a

supervised learning problem (Richardson et al., 2013; Berant et al., 2014) and

create a growing number of large-scale datasets (Rajpurkar et al., 2016; Lai

et al., 2017), which greatly facilitate the development of machine learning-based

approaches.

It is worth mentioning that machine reading comprehension is closely related
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question answering (QA), and nowadays, researchers sometimes use the two

terms interchangeably rather than making a clear distinction between them. How-

ever, traditionally, MRC tasks have been designed to be text-dependent (Richard-

son et al., 2013; Hermann et al., 2015): they focus on evaluating comprehension

of machine readers based on a given text, typically by requiring a model to

answer questions relevant to the text. This is distinguished from many question

answering tasks (Fader et al., 2014; Clark et al., 2016), in which no ground truth

document supporting answers is provided with each question, making them

relatively less suitable for isolating improvements to MRC.

2.2 MRC Tasks

As mentioned in Chapter 1, this dissertation primarily discusses non-extractive

multiple-choice MRC, in which answer options are not restricted to extractive text

spans. More specifically, we focus on non-extractive multiple-choice MRC tasks

that aim to answer free-form questions, which are not limited to a single question

type such as cloze-style questions formed by removing a span or a sentence in

a text (Hill et al., 2016; Bajgar et al., 2016; Mostafazadeh et al., 2016; Xie et al.,

2018; Zheng et al., 2019) or close-ended questions that can be answered with a

minimal answer (e.g., yes or no (Clark et al., 2019)). It involves extensive human

efforts to build such a dataset (e.g., MCTest (Richardson et al., 2013), SemEval-

2018 Task 11 (Ostermann et al., 2018), MultiRC (Khashabi et al., 2018), and

OpenBookQA (Mihaylov et al., 2018)) by crowdsourcing. Besides crowdsourcing,

datasets such as RACE (Lai et al., 2017) and ARC (Clark et al., 2018) are collected

from language or science exams designed by educational experts (Penas et al.,

2014; Shibuki et al., 2014; Tseng et al., 2016) to evaluate the comprehension
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level of human participants. As these kind of datasets are relatively difficult to

construct or collect, most existing datasets are small in size, which hinders the

development of state-of-the-art deep neural models, compared with large-scale

extractive and abstractive MRC datasets (Hermann et al., 2015; Hill et al., 2016;

Onishi et al., 2016; Chen and Choi, 2016; Mostafazadeh et al., 2016; Bajgar et al.,

2016; Nguyen et al., 2016; Trischler et al., 2017; Joshi et al., 2017; Ma et al., 2018;

Kočiskỳ et al., 2018), such as SQuAD (Rajpurkar et al., 2016) and CoQA (Reddy

et al., 2019).

2.3 MRC Models

We divide models for MRC into three categories: rule-based model, classical

machine learning model, and end-to-end neural model.

Rule-based model. Most early MRC models are based on hand-crafted rules,

typically involving rule-based pattern matching (e.g., bag-of-words matching)

and shadow linguistic processing (e.g., stemming) (Hirschman et al., 1999; Riloff

and Thelen, 2000). For example, typical rule-based models for multiple-choice

MRC compute the matching score between each question-option pair and the

reference document and choose the option with the highest score as the an-

swer. The matching score is calculated using simple rules such as the count of

matched words (Yih et al., 2013) and the sum of the TF-IDF values of the matched

words (Richardson et al., 2013).
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Classical machine learning model. With the availability of training data, ma-

chine learning-based approaches have attracted increasing interest since the

2010s. Early machine learning-based approaches mostly extract rich features and

employ classical machine learning algorithms (Sachan et al., 2015; Wang et al.,

2015). For example, Wang et al. (2015) develop a model of this type for multiple-

choice MRC, which combines features based on rule-based pattern matching,

dependency syntax, frame semantics, coreference, and word embeddings in a

max-margin learning framework.

End-to-end neural model. The machine learning-based approaches for MRC

have been gradually evolving in the direction of deep learning models since 2015,

when large-scale training data for MRC started to be available (Hermann et al.,

2015). Compared with classical machine learning models, deep learning models

rely much less on hand-crafted features. Instead, deep learning models mainly

learn the features themselves using end-to-end neural networks. For example, a

typical deep learning model for multiple-choice MRC converts the document,

question, and option to embedding vectors and passes them to a neural network

that consists of several modeling or interaction layers. The neural network is

trained to predict if the option is correct (Wang et al., 2018d). Before 2018, the

parameters of neural networks in most work are randomly initialized before

being tuned using the gradient descent algorithm or its variants on the target

MRC task’s training data. In 2018, Radford et al. propose first pre-training the

neural network with a language model objective over large-scale corpora such

as thousands of books and then fine-tuning the pre-trained neural network on

the target MRC task. This framework achieves remarkable success in MRC and

is generally followed by today’s state-of-the-art MRC models.
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CHAPTER 3

READING STRATEGIES FOR IMPROVED READING COMPREHENSION

Recently, significant progress has been achieved on many natural language

processing tasks including MRC by fine-tuning a pre-trained general-purpose

language model (Radford et al., 2018; Devlin et al., 2019). However, similar to the

process of knowledge accumulation for human readers, it is time-consuming and

resource-demanding to impart massive amounts of general domain knowledge

from external corpora into a deep language model via pre-training. For example,

it takes a month to pre-train a 12-layer transformer on eight P100 GPUs over the

BooksCorpus (Zhu et al., 2015; Radford et al., 2018); Devlin et al. (2019) pre-train

a 24-layer transformer using 64 TPUs for four days on the BooksCorpus plus

English Wikipedia, a feat not easily reproducible considering the tremendous

computational resources (≈ one year to train on eight P100 GPUs).

From a practical viewpoint, given a limited number of training instances

and a pre-trained model, can we improve machine reading comprehension

during fine-tuning instead of imparting more prior knowledge into a model via

expensive pre-training? Inspired by reading strategies identified in cognitive

science research that have been shown effective in improving comprehension

levels of human readers, especially those who lack adequate prior knowledge

of the topic of the text (Mokhtari and Sheorey, 2002; Mokhtari and Reichard,

2002; McNamara et al., 2004), we propose in this chapter three corresponding

domain-independent strategies to improve MRC based on an existing pre-trained

transformer (Section 3.2.1):

• BACK AND FORTH READING (“I go back and forth in the text to find relation-

ships among ideas in it.”):
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consider both the original and reverse order of an input sequence (Sec-

tion 3.2.2)

• HIGHLIGHTING (“I highlight information in the text to help me remember it.”):

add a trainable embedding to the text embedding of those tokens deemed

relevant to the question and candidate answers (Section 3.2.3)

• SELF-ASSESSMENT (“I ask myself questions I would like to have answered in the

text, and then I check to see if my guesses about the text are right or wrong.”):

generate practice questions and their associated span-based candidate

answers from the existing reference documents (Section 3.2.4)

By fine-tuning a pre-trained transformer (Radford et al., 2018) according to

our proposed strategies on the largest general domain multiple-choice MRC

dataset RACE (Lai et al., 2017) collected from language exams, we obtain a 5.8%

absolute improvement in accuracy over the previous best result achieved by the

same pre-trained transformer fine-tuned on RACE without the use of strategies

(Section 3.3.2). We further fine-tune the resulting model on a target MRC task.

Experiments show that our method achieves new state-of-the-art results on six

representative non-extractive MRC datasets that require a range of reading skills

such as commonsense and multi-sentence reasoning (i.e., ARC (Clark et al., 2016,

2018), OpenBookQA (Mihaylov et al., 2018), MCTest (Richardson et al., 2013),

SemEval-2018 Task 11 (Yang et al., 2017), ROCStories (Mostafazadeh et al., 2016),

and MultiRC (Khashabi et al., 2018)) (Section 3.3.4). These results indicate the

effectiveness of our proposed strategies and the versatility and generality of our

fine-tuned models that incorporate the strategies.

This chapter is based on Sun et al. (2019b).
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3.1 Task Introduction

In this chapter, we investigate how to make use of limited resources to improve

MRC, using seven representative multiple-choice MRC datasets as case studies.

As shown in Table 3.1, the majority of the correct answer options in most of the

datasets (except for ARC and MCTest) are non-extractive. Except for MultiRC,

there is exactly one correct answer option for each question. For ARC and Open-

BookQA, a reference corpus is provided instead of a single reference document

associated with each question.

Here we give a formal task definition. Given a reference document d, a

question q, and associated answer options {o1, o2, . . . , om}, the goal is to select the

correct answer option(s). We can easily adapt our method to an MRC task that

only provides a reference corpus (Section 3.3.4).

3.2 Approach

We first introduce a neural reader based on a pre-trained transformer (Sec-

tion 3.2.1) and then elaborate on the strategies that are applied during the fine-

tuning stage — back and forth reading (Section 3.2.2), highlighting (Section 3.2.3),

and self-assessment (Section 3.2.4).

3.2.1 Framework Overview

Our neural reader follows the framework of discriminatively fine-tuning a gener-

ative pre-trained transformer (GPT) (Radford et al., 2018). It adapts a pre-trained

13
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Figure 3.1: Framework Overview. Strategy 1, 2, and 3 refer to back and forth
reading (BF) (Section 3.2.2), highlighting (HL) (Section 3.2.3), and self-assessment
(SA) (Section 3.2.4), respectively.

multi-layer transformer (Vaswani et al., 2017; Liu et al., 2018) language model to

a labeled dataset C, where each instance consists of a sequence of input tokens

x1, . . . , xn, along with a label y, by maximizing:

∑
x,y

log P(y | x1, . . . , xn) + λ · L(C) (3.1)

where L is the likelihood from the language model, λ is the weight of language

model, and P(y | x1, . . . , xn) is obtained by a linear classification layer over the

final transformer block’s activation of the language model. For multiple-choice

MRC tasks, x1, . . . , xn come from the concatenation of a start token, a reference

document, a question, a delimiter token, an answer option, and an end token; y

indicates the correctness of an answer option. We refer readers to Radford et al.

(2018) for more details.

Apart from placing a delimiter to separate the answer option from the docu-
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ment and question, the original framework pays little attention to task-specific

structures in MRC tasks. Inspired by reading strategies, with limited resources

and a pre-trained transformer, we propose three strategies to improve machine

reading comprehension. We show the whole framework in Figure 3.1.

3.2.2 Back and Forth Reading (BF)

For simplicity, we represent the original input sequence of GPT during fine-

tuning (Radford et al., 2018) as [dq $ o], where [, $, and ] represent the start token,

delimiter token, and end token, respectively. Inspired by back and forth reading,

we consider both the original order and the reverse order [o $ qd]. The token

order within d, q, and o is still preserved. We fine-tune two GPTs that use [dq $ o]

and [o $ qd] as the input sequence respectively, and then we ensemble the two

models. We also consider other similar pairs of input sequences such as [qd $ o]

and [o $ dq] in the experiments (Section 3.3.3).

3.2.3 Highlighting (HL)

In the original implementation (Radford et al., 2018), during the fine-tuning

stage of GPT, the text embedding of a document is independent of its associated

questions and answer options. Inspired by highlights used in human reading,

we aim to make the document encoding aware of the associated question-answer

option pair (q, oi). We focus on the content words in questions and answer options

since they appear to provide more useful information (Mirza and Bernardi, 2013),

and we identify them via their part of speech (POS) tags, one of: noun, verb,

16



adjective, adverb, numeral, or foreign word.

Formally, we let T be the set of POS tags of the content words. We let d denote

the sequence of the text embedding of document d. We use d j to represent the jth

token in d and d j to denote the text embedding of d j. Given d and a (q, oi) pair,

we define a highlight embedding h j
i for the jth token in d as:

h j
i =



`+ if the POS tag of d j belongs to T ,

and d j appears in either q or oi

`− otherwise

(3.2)

where `+ and `− are two trainable vectors of the same dimension as d j.

Following the above definition, the sequence of the highlight embedding

hi = h1
i , h

2
i , . . . , h

n
i is of the same length as d. We replace d with di = d + hi when

we encode a document. More specifically, we use the concatenation of b, di, q, l,

oi, and e as the new input of GPT during fine-tuning (Section 3.2.1), where b, l,

and e denote the embedding of the start token, delimiter token, and end token,

respectively, and q and oi represent the sequence of the text embedding of q and

oi, respectively.

3.2.4 Self-Assessment (SA)

While in previous work (Radford et al., 2018), the original GPT is directly fine-

tuned on an MRC end task, we instead develop a fine-tuning approach inspired

by the self-assessment reading strategy. In particular, we propose a simple

method to generate questions and their associated multiple span-based answer

options, which cover the content of multiple sentences from a reference document.
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By first fine-tuning a pre-trained model on these practice instances, we aim to

render the resulting fine-tuned model more aware of the input structure and to

integrate information across multiple sentences as may be required to answer a

given question.

Concretely, we randomly generate no more than nq questions and associated

answer options based on each document from the end task (i.e., RACE in this

chapter). We describe the steps as follows.

• Input: a reference document from the end task.

• Output: a question and four answer options associated with the reference

document.

1. Randomly pick no more than ns sentences from the document and concate-

nate these sentences together.

2. Randomly pick no more than nc non-overlapping spans from the concate-

nated sentences. Each span randomly contains no more than nt tokens

within a single sentence. We concatenate the selected spans to form the

correct answer option. We remove the selected spans from the concatenated

sentences and use the remaining text as the question.

3. Generate three distractors (i.e., wrong answer options) by randomly replac-

ing spans in the correct answer option with randomly picked spans from

the document.

where nq, ns, nc, and nt are used to control the number and difficulty level of the

questions.
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3.3 Experiment

3.3.1 Experiment Settings

For most of the hyperparameters, we follow the work of Radford et al. (2018). We

use the same preprocessing procedure and the released pre-trained transformer.

We generate 119k instances based on the reference documents from the training

and development set of RACE (Lai et al., 2017), with nq = 10, ns = 3, nc = 4, and

nt = 4 (Section 3.2.4). We first fine-tune the original pre-trained model on these

automatically generated instances with 1 training epoch (data flow 1 boxed in

Figure 3.1). We then fine-tune the model on a large-scale general domain MRC

dataset RACE with 5 training epochs (data flow 2 boxed in Figure 3.1). Finally,

we fine-tune the resulting model on one of the aforementioned six out-of-domain

MRC datasets (at max 10 epochs). See data flow 3 boxed in Figure 3.1. When we

fine-tune the model on different datasets, we set the batch size to 8, language

model weight λ to 2. We ensemble models by averaging logits after the linear

layer. For strategy highlighting (Section 3.2.3), the content-word POS tagset T =

{NN, NNP, NNPS, NNS, VB, VBD, VBG, VBN, VBP, VBZ, JJ, JJR, JJS, RB, RBR,

RBS, CD, FW}, and we randomly initialize `+ and `−.

3.3.2 Evaluation on RACE

In Table 3.2, we first report the accuracy of the state-of-the-art models (MMN

and original fine-tuned GPT) and Amazon Turkers (Human performance). We

then report the performance of our implemented fine-tuned GPT baselines and

our models (GPT+Strategies). Results are shown on the RACE dataset (Lai et al.,
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Approach # RACE-M RACE-H RACE

MMN (Tang et al., 2019) 9 64.7 55.5 58.2
GPT (Radford et al., 2018) 1 62.9 57.4 59.0
Human performance (Lai et al., 2017) 1 85.1 69.4 73.3

GPT?
1 60.9 57.8 58.7
2 62.6 58.4 59.6
9 63.5 59.3 60.6

GPT?

+
Strategies

SA 1 63.2 59.2 60.4
HL 1 67.4 61.5 63.2
BF 2 67.3 60.7 62.6
SA + HL 1 69.2 61.5 63.8
SA + HL + BF 2 70.9 63.2 65.4
SA + HL + BF 9 72.0 64.5 66.7

Table 3.2: Accuracy (%) on the test set of RACE (#: number of (ensemble) models;
SA: Self-Assessment; HL: Highlighting; BF: Back and Forth Reading; ?: our
implementation).

2017) and its two subtasks: RACE-M collected from middle school exams and

RACE-H collected from high school exams.

Our single and ensemble models outperform previous state-of-the-art (i.e.,

GPT and GPT (9×)) by a large margin (63.8% vs. 59.0%; 66.7% vs. 60.6%). The

two single-model strategies – self-assessment and highlighting – improve over

the single-model fine-tuned GPT baseline (58.7%) by 1.7% and 4.5%, respectively.

Using the back and forth reading strategy, which involves two models, gives a

3.0% improvement in accuracy compared to the ensemble of two original fine-

tuned GPTs (59.6%). Strategy combination further boosts the performance. By

combining self-assessment and highlighting, our single model achieves a 5.1%

improvement in accuracy over the fine-tuned GPT baseline (63.8% vs. 58.7%).

We apply all the strategies by ensembling two such single models that read

an input sequence in either the original or the reverse order, leading to a 5.8%

improvement in accuracy over the ensemble of two original fine-tuned GPTs

(65.4% vs. 59.6%).
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To further analyze performance, we roughly divide the question types into

five categories: detail (facts and details), inference (reasoning ability), main (main

idea or purpose of a document), attitude (author’s attitude toward a topic or tone/source

of a document), and vocabulary (vocabulary questions) (Qian and Schedl, 2004; Lai

et al., 2017) and annotate all the instances of the RACE development set. As

shown in Figure 3.2, compared to the fine-tuned GPT baseline, our single-model

strategies (SA and HL) consistently improve the results across all categories.

Compared to other strategies, highlighting is likely to lead to bigger gains for

most question types.

detail inference main attitude vocabulary
50

60

70

80
 GPT
 SA
 HL
 BF

Figure 3.2: Performance on different question types.

Compared to human performance, there is still a considerable room for im-

provements, especially on RACE-M. We take a close look at the instances from the

RACE-M development set that all our implementations fail to answer correctly.

We notice that 82.0% of them require one or multiple types of world knowledge

(e.g., negation resolution, commonsense, paraphrase, and mathematical/logic

knowledge (Sugawara et al., 2017b,a, 2018)), especially when correct answer

options are not explicitly mentioned in the reference document. For example,

we need the knowledge — the type of thing that is written by a writer can probably
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be a book — to answer the question “follow your heart is a ” from the context

“Follow your heart by Andrew Matthews, an Australian writer, tells us that making

our dreams real is life’s biggest challenge”. Besides, 19.7% of these failed instances

require coreference resolution. It might be promising to leverage coreference

resolvers to connect nonadjacent relevant sentences.

Task Metric Previous STOA GPT GPT GPT GPT
(2×) +Strategies +Strategies (2×)

ARC-Easy Acc. Clark et al. (2018) 62.6 57.0 57.1 66.6 68.9
ARC-Challenge Acc. Ni et al. (2018) 36.6 38.2 38.4 40.7 42.3
OpenBookQA Acc. Mihaylov et al. (2018) 50.2 52.0 52.8 55.2 55.8
MCTest-MC160 Acc. Chung et al. (2018) 76.4 65.4 65.8 80.0 81.7
MCTest-MC500 Acc. Chung et al. (2018) 72.3 61.5 61.0 78.7 82.0
SemEval Acc. Chen et al. (2018) 84.1 88.0 88.6 88.8 89.5
ROCStories Acc. Radford et al. (2018) 86.5 87.1 87.5 88.0 88.3

MultiRC
F1m Khashabi et al. (2018) 66.5 69.3 70.3 71.5 73.1
F1a Khashabi et al. (2018) 63.2 67.2 67.7 69.2 70.5
Acc.† Khashabi et al. (2018) 11.8 15.2 16.5 22.6 21.8

Average Acc. 60.1 58.1 58.5 65.1 66.3

Table 3.3: Performance (%) on the test sets of ARC, OpenBookQA, MCTest,
SemEval-2018 Task 11, and ROCStories and the development set of MultiRC
(Acc.: Accuracy; F1m: macro-average F1; F1a: micro-average F1; †: using the joint
exact match accuracy (i.e., EM0 reported by the official evaluation (Khashabi
et al., 2018))). RACE is used as the source task for all our implementations.

3.3.3 Further Discussions on Strategies

Besides the strategies introduced in Section 3.2, we also explore other reading

strategies such as SUMMARIZATION (“I take an overall view of the text to see what it

is about before carefully reading it.”) by appending an extractive summary (Boudin

et al., 2015) before each reference document, which is shown less effective for

machine reading comprehension in our experiments compared to the strategies

we focus on. In this section, we further discuss the three strategies.

Back and Forth Reading We notice that the input order difference between
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Task Metric GPT GPT GPT GPT
(2×) +Strategies +Strategies (2×)

ARC-Easy Acc. 54.0 53.9 61.9 63.1
ARC-Challenge Acc. 30.3 30.7 35.0 35.4
OpenBookQA Acc. 50.0 50.0 54.2 55.0
MCTest-MC160 Acc. 58.8 60.0 67.5 70.8
MCTest-MC500 Acc. 52.0 54.0 64.7 64.8
SemEval Acc. 87.3 88.0 87.6 88.1
ROCStories Acc. 86.7 87.0 87.4 88.1

MultiRC
F1m 69.3 69.3 68.8 69.7
F1a 66.2 66.5 67.4 67.9
Acc.† 11.9 13.1 16.2 16.9

Average Acc. 53.9 54.6 59.3 60.3

Table 3.4: Performance (%) on the test sets of ARC, OpenBookQA, MCTest,
SemEval-2018 Task 11, and ROCStories and the development set of MultiRC
using the target data only (i.e., without the data flow 1 and 2 boxed in Figure 3.1)
(Acc.: Accuracy; F1m: macro-average F1; F1a: micro-average F1; †: using the joint
exact match accuracy (i.e., EM0 reported by the official evaluation (Khashabi
et al., 2018))).

two ensemble models is likely to yield performance gains. Besides ensembling

two models that use input sequence [dq $ o] and [o $ qd] respectively, we also

investigate other reverse or almost reverse pairs. For example, we can achieve

better results by ensembling [qd $ o] and [o $ dq] (61.0%) or [qd $ o] and [o $ qd]

(61.7%), compared to the ensemble of two original fine-tuned GPTs (both of them

use [d $ qo]) on the RACE dataset (59.6% in Table 3.2).

Highlighting We try two variants to define highlight embeddings (Equa-

tion 3.2 in Section 3.2.3) by considering the content of questions only or answer

options only. Experiments show that using partial information yields a de-

crease in accuracy (60.6% and 61.0%, respectively) compared to 63.2% (Table 3.2),

achieved by considering the content words in a question and its answer options.

We attempt to also highlight the coreferential mentions of the content words,

which does not lead to further gains, though.

Self-Assessment We explore alternative approaches to generate questions.
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For example, we use the Wikipedia articles from SQuAD (Rajpurkar et al., 2016)

instead of the general domain documents from the end task RACE. We generate

the same number of questions as the number of questions we generate using

RACE following the same steps mentioned in Section 3.2.4. Experiments show

that this method also improves the accuracy of the fine-tuned GPT baseline

(59.7% vs. 58.7%). As self-assessment can be somehow regarded as a data

augmentation method, we investigate other unsupervised question generation

methods such as sentence shuffling and paraphrasing via back-translation (Ding

and Zhou, 2018; Yu et al., 2018). Our experiments demonstrate that neither of

them results in performance improvements on the RACE dataset.

3.3.4 Adaptation to Other Non-Extractive MRC Tasks

We follow the philosophy of transferring the knowledge from a high-performing

model pre-trained on a large-scale supervised data of a source task to a tar-

get task, in which only a small amount of training data is available (Chung

et al., 2018). RACE has been used to pre-train a model for other MRC tasks

as it contains the largest number of general domain non-extractive questions

(Table 3.1) (Ostermann et al., 2018; Wang et al., 2018c). In our experiment, we

also treat RACE as the source task and regard six representative non-extractive

multiple-choice MRC datasets from multiple domains as the target tasks.

We require some task-specific modifications considering the different struc-

tures of these datasets. In ARC and OpenBookQA, there is no reference document

associated with each question. Instead, a reference corpus is provided, which

consists of unordered science-related sentences relevant to questions. We there-
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fore first use Lucene (McCandless et al., 2010) to retrieve the top 50 sentences

by using the non-stop words in a question and one of its answer options as a

query. The retrieved sentences are used to form the reference document for each

answer option. In MultiRC, a question could have more than one correct answer

option. Therefore, we use a sigmoid function instead of softmax at the final layer

(Figure 3.1) and regard the task as a binary (i.e., correct or incorrect) classification

problem over each (document, question, answer option) instance. When we

adapt our method to the non-conventional MRC dataset ROCStories, which

aims at choosing the correct ending to a four-sentence incomplete story from

two answer options (Mostafazadeh et al., 2016), we leave the question context

empty as no explicit questions are provided. Since the test set of MultiRC is not

publicly available, we report the performance of the model that achieves the

highest micro-average F1 (F1a) on the development set. For other tasks, we select

the model that achieves the highest accuracy on the development set and report

the accuracy on the test set.

We first fine-tune GPT using our proposed three strategies on RACE and

further fine-tune the resulting model on one of the six target tasks (see Table 3.3).

During the latter fine-tuning stage, besides the highlighting embeddings inherited

from the previous fine-tuning stage, we also apply the strategy back and forth

reading, and we do not consider self-assessment since the model has already bene-

fited from the high-quality RACE instances during the first fine-tuning stage. We

compare with the baselines that are first fine-tuned on RACE and then fine-tuned

on a target task without the use of strategies, which already outperform previous

state-of-the-art (SOTA) on four out of six datasets (OpenBookQA, SemEval-2018

Task 11, ROCStories, and MultiRC). By using the strategies, we obtain a 7.8%

absolute improvement in average accuracy over the ensemble baseline (58.5%)
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and a 6.2% absolute improvement over previous SOTA (60.1%).

To further investigate the contribution of the strategies, we directly fine-tune

GPT on a target task without using the labeled data in RACE (i.e., we only

keep data flow 3 in Figure 3.1). Compared to the baseline that is fine-tuned

without using strategies (54.6%), we obtain a 10.4% relative improvement in

average accuracy (60.3%) and especially large improvements on datasets ARC,

OpenBookQA, and MCTest (Table 3.4).

3.4 Related Work

3.4.1 Methods for Multiple-Choice MRC

We primarily discuss methods applied to large-scale datasets such as RACE (Lai

et al., 2017). Researchers develop a variety of methods with attention mecha-

nisms (Chen et al., 2016; Dhingra et al., 2017; Xu et al., 2018b; Tay et al., 2018;

Tang et al., 2019) for improvement such as adding an elimination module (Parikh

et al., 2018) or applying hierarchical attention strategies (Zhu et al., 2018; Wang

et al., 2018d). These methods seldom take the rich external knowledge (other

than pre-trained word embeddings) into considerations. Instead, we investigate

different strategies based on an existing pre-trained transformer (Radford et al.,

2018) (Section 3.2.1), which leverages rich linguistic knowledge from external

corpora and achieves state-of-the-art performance on a wide range of natural

language processing tasks including machine reading comprehension.
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3.4.2 Transfer Learning for MRC and QA

Transfer learning techniques have been successfully applied to machine reading

comprehension (Golub et al., 2017; Chung et al., 2018) and question answer-

ing (Min et al., 2017; Wiese et al., 2017). Compared to previous work, we simply

fine-tune our model on the source data and then further fine-tune the entire

model on the target data. The investigation of methods such as adding addi-

tional parameters or an L2 loss and fine-tuning only part of the parameters is

beyond the scope of this work.

3.4.3 Data Augmentation for MRC Without Using External

Datasets

Previous methods augment the training data for extractive machine reading com-

prehension and question answering by randomly reordering words or shuffling

sentences (Ding and Zhou, 2018; Li and Zhou, 2018) or generating questions

through paraphrasing (Yang et al., 2017; Yuan et al., 2017), which require a large

amount of training data or limited by the number of training instances (Yu et al.,

2018). In comparison, our problem (i.e., question and answer options) genera-

tion method does not rely on any existing questions in the training set, and the

generated questions can involve the content of multiple sentences in a reference

document.
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3.5 Chapter Summary

Inspired by previous research on reading strategies for improved comprehension

levels of human readers, we propose three strategies (i.e., back and forth read-

ing, highlighting, and self-assessment), aiming at improving machine reading

comprehension using limited resources: a pre-trained language model and a

limited number of training instances. By applying the proposed three strategies,

we obtain a 5.8% absolute improvement in accuracy over the state-of-the-art

performance on the RACE dataset. By fine-tuning the resulting model on a

new target task, we achieve new state-of-the-art results on six representative

non-extractive MRC datasets from multiple domains that require a diverse range

of reading skills. These results consistently indicate the effectiveness of our

proposed strategies and the general applicability of our fine-tuned model that

incorporates these strategies.
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CHAPTER 4

DIALOGUE-BASED READING COMPREHENSION

In the preceding chapter, our study is carried out on previous representative

non-extractive MRC datasets. Source documents in these datasets have generally

been drawn from formal written texts such as news, fiction, and Wikipedia

articles, which are commonly considered well-written, accurate, and neutral (Lai

et al., 2017; Khashabi et al., 2018; Ostermann et al., 2018).

With the goal of advancing research in machine reading comprehension and

facilitating dialogue understanding, we construct and present in this chapter

DREAM — the first multiple-choice Dialogue-based REAding comprehension

exaMination dataset. We collect 10,197 questions for 6,444 multi-turn multi-

party dialogues from English language exams, which are carefully designed by

educational experts (e.g., English teachers) to assess the comprehension level

of Chinese learners of English. Each question is associated with three answer

options, exactly one of which is correct. (See Table 4.1 for an example.) DREAM

covers a variety of topics and scenarios in daily life such as conversations on the

street, on the phone, in a classroom or library, at the airport or the office or a shop

(Section 4.1).

Based on our analysis of DREAM, we argue that dialogue-based reading

comprehension is at least as difficult as existing non-conversational counter-

parts. In particular, answering 34% of DREAM questions requires unspoken

commonsense knowledge, e.g., unspoken scene information. This might be due

to the nature of dialogues: for efficient oral communication, people rarely state

obvious explicit world knowledge (Forbes and Choi, 2017) such as “Christmas

Day is celebrated on December 25th”. Understanding the social implications of an
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Dialogue 1 (D1)

W: Tom, look at your shoes. How dirty they are! You must clean them.
M: Oh, mum, I just cleaned them yesterday.
W: They are dirty now. You must clean them again.
M: I do not want to clean them today. Even if I clean them today, they will get dirty again tomorrow.
W: All right, then.
M: Mum, give me something to eat, please.
W: You had your breakfast in the morning, Tom, and you had lunch at school.
M: I am hungry again.
W: Oh, hungry? But if I give you something to eat today, you will be hungry again tomorrow.

Q1 Why did the woman say that she wouldn’t give him anything to eat?
A. Because his mother wants to correct his bad habit.?
B. Because he had lunch at school.
C. Because his mother wants to leave him hungry.

Table 4.1: A sample DREAM problem that requires general world knowledge (?:
the correct answer option).

utterance as well as inferring a speaker’s intentions is also regularly required

for answering dialogue-based questions. The dialogue content in Table 4.1, for

example, is itself insufficient for readers to recognize the intention of the female

speaker (W) in the first question (Q1). However, world knowledge is rarely

considered in state-of-the-art reading comprehension models (Tay et al., 2018;

Wang et al., 2018d).

Moreover, dialogue-based questions can cover information imparted across

multiple turns involving multiple speakers. In DREAM, approximately 85% of

questions can only be answered by considering the information from multiple

sentences. For example, to answer Q1 in Table 4.2 regarding the date of birth

of the male speaker (M), the supporting sentences (in bold) include “You know,

tomorrow is Christmas Day” from the female speaker and “. . . I am more than excited

about my birthday, which will come in two days” from the male speaker. Com-

pared to “multiple-sentence questions” in traditional reading comprehension

datasets, DREAM further requires an understanding of the turn-based structure

of dialogue, e.g. for aligning utterances with their corresponding speakers.
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As only 16% of correct answer options are text spans from the source doc-

uments, we primarily explore rule-based methods and state-of-the-art neural

models designed for multiple-choice reading comprehension (Section 4.2). We

find first that neural models designed for non-dialogue-based reading compre-

hension (Chen et al., 2016; Dhingra et al., 2017; Wang et al., 2018d) do not fare

well: the highest achieved accuracy is 45.5%, only slightly better than the accu-

racy (44.6%) of a simple lexical baseline (Richardson et al., 2013). For the most

part, these models fundamentally exploit only surface-level information from

the source documents. Considering the above-mentioned challenges, however,

we hypothesize that incorporating general world knowledge and aspects of the

dialogue structure would allow a better understanding of the dialogues. As a

result, we modify our baseline systems to include (1) general world knowledge

in the form of such as ConceptNet relations (Speer et al., 2017) and a pre-trained

language model (Radford et al., 2018), and (2) speaker information for each utter-

ance. Experiments show the effectiveness of these factors on the lexical baselines

as well as neural and non-neural machine learning approaches: we acquire up to

11.9% absolute gain in accuracy compared to the highest performance achieved

by the state-of-the-art reading comprehension model (Wang et al., 2018d) that

mainly relies on explicit surface-level information in the text (Section 4.3).

Finally, we see a significant gap between the best automated approach (59.5%)

and human ceiling performance (98.6%) on the DREAM dataset. This provides

yet additional evidence that dialogue-based reading comprehension is a very

challenging task. We hope that it also inspires the research community to develop

methods for the dialogue-based reading comprehension task.

This chapter is based on Sun et al. (2019a).
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4.1 Data

In this section, we describe how we construct DREAM (Section 4.1.1) and provide

a detailed analysis of this dataset (Section 4.1.2).

Dialogue 2 (D2)

W: Hey, Mike. Where have you been? I didn’t see you around these days?
M: I was hiding in my office. My boss gave me loads of work to do, and I tried to finish it before my birthday.

Anyway, I am done now. Thank goodness! How is everything going with you?
W: I’m quite well. You know, tomorrow is Christmas Day. Do you have any plans?
M: Well, to tell you the truth, I am more than excited about my birthday, which will come in two days. I

am going to visit my parents-in-law with my wife.
W: Wow, sounds great.
M: Definitely! This is my first time to spend my birthday with them.
W: Do they live far away from here?
M: A little bit. We planned to take the train, but considering the travel peak, my wife strongly suggested that

we go to the airport right after we finish our work this afternoon. How about you? What’s your holiday
plan?

W: Well, our situations are just the opposite. My parents-in-law will come to my house, and they wish to stay
at home and have a quiet Christmas Day. So I have to call my friends to cancel our party that will be held
at my house.

M: You’ll experience a quite different and lovely holiday. Enjoy your Christmas!
W: Thanks, the same to you!

Q1 What is the date of the man’s birthday?
A. 25th, December.
B. 26th, December.?
C. 27th, December.
Q2 How will the man go to his wife’s parents’ home?
A. By train.
B. By bus.
C. By plane.?
Q3 What is the probable relationship between the two speakers?
A. Husband and wife.
B. Friends.?
C. Parent-in-law and son-in-law.

Table 4.2: A complete sample DREAM problem (?: the correct answer option).

4.1.1 Collection Methodology

We collect dialogue-based comprehension problems from a variety of English

language exams (including practice exams) such as National College Entrance
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Examination, College English Test, and Public English Test1, which are designed

by human experts to assess either the listening or reading comprehension level

of Chinese English learners in high schools and colleges (aged 12-22). All the

problems in DREAM are freely accessible online for public usage. Each problem

consists of a dialogue and a series of multiple-choice questions. To ensure every

question is associated with exactly three answer options, we drop wrong answer

option(s) randomly for questions with more than three options. We remove

duplicate problems and randomly split the data at the problem level, with 60%

train, 20% development, and 20% test.

4.1.2 Data Analysis

We summarize the statistics of DREAM in Table 4.3 and data split in Table 4.4.

Compared to existing datasets built from formal written texts, the vocabulary

size is relatively small since spoken English by its nature makes greater use of

high-frequency words and needs a smaller vocabulary for efficient real-time

communication (Nation, 2006).

Metric Value

# of answer options per question 3
# of turns 30,183
Avg./Max. # of questions per dialogue 1.6 / 10
Avg./Max. # of speakers per dialogue 2.0 / 7
Avg./Max. # of turns per dialogue 4.7 / 48
Avg./Max. option length (in tokens) 5.3 / 21
Avg./Max. question length (in tokens) 8.6 / 24
Avg./Max. dialogue length (in tokens) 85.9 / 1,290
vocabulary size 13,037

Table 4.3: The overall statistics of DREAM. A turn is defined as an uninterrupted
stream of speech from one speaker in a dialogue.

1We list all the websites used for data collection in the released dataset.
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Train Dev Test All

# of dialogues 3,869 1,288 1,287 6,444
# of questions 6,116 2,040 2,041 10,197

Table 4.4: The separation of the training, development, and test sets in DREAM.

We categorize questions into two main categories according to the types of

knowledge required to answer them: matching and reasoning.

• Matching A question is entailed or paraphrased by exactly one sentence

in a dialogue. The answer can be extracted from the same sentence. For

example, we can easily verify the correctness of the question-answer pair

(“What kind of room does the man want to rent?”, “A two-bedroom apartment.”)

based on the sentence “M: I’m interested in renting a two-bedroom apartment”.

This category is further divided into two categories word matching and

paraphrasing in previous work (Chen et al., 2016; Trischler et al., 2017).

• Reasoning Questions that cannot be answered by the surface meaning of a

single sentence belong to this category. We further define four subcategories

as follows.

◦ Summary Answering this kind of questions requires the whole picture

of a dialogue, such as the topic of a dialogue and the relation between

speakers (e.g., D2-Q3 in Table 4.2). Under this category, questions such

as “What are the two speakers talking about?” and “What are the speakers

probably doing?” are frequently asked.

◦ Logic We require logical reasoning to answer questions in this category.

We usually need to identify logically implied relations among multiple

sentences in a dialogue. To reduce the ambiguity during the annotation,

we regard a question that can only be solved by considering the content
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of multiple sentences and does not belong to the summary subcategory

that involves all the sentences in a dialogue as a logic question. Following

this definition, both D2-Q1 and D2-Q2 in Table 4.2 belong to this category.

◦ Arithmetic Inferring the answer requires arithmetic knowledge (e.g.,

D2-Q1 in Table 4.2 requires 25 − 1 + 2 = 26).

◦ Commonsense To answer questions under this subcategory, besides the

textual information in the dialogue, we also require external common-

sense knowledge that cannot be obtained from the dialogue. For instance,

all questions in Table 4.2 fall under this category. D2-Q1 and D2-Q2 in

Table 4.2 belong to both logic and commonsense since they require multiple

sentences as well as commonsense knowledge for question answering.

There exist multiple types of commonsense knowledge in DREAM such

as the well-known properties of a highly-recognizable entity (e.g., D2-Q1

in Table 4.2), the prominent relationship between two speakers (e.g.,

D2-Q3 in Table 4.2), the knowledge of or shared by a particular culture

(e.g., when a speaker says “Cola? I think it tastes like medicine.”, she/he

probably means “I don’t like cola.”), and the cause-effect relation between

events (e.g., D1-Q1 in Table 4.1). We refer readers to LoBue and Yates

(2011) for detailed definitions.

Table 4.5 shows the question type distribution labeled by two human annota-

tors on 25% questions randomly sampled from the development and test sets.

Besides the previously defined question categories, we also report the percentage

of questions that require reasoning over multiple sentences (i.e., summary or logic

questions) and the percentage of questions that require the surface-level under-

standing or commonsense/math knowledge based on the content of a single

sentence. As a question can belong to multiple reasoning subcategories, the
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summation of the percentage of reasoning subcategories is not equal to the per-

centage of reasoning. The Cohen’s kappa coefficient is 0.67 on the development

set and 0.68 on the test set.

Question Type Dev Test Dev + Test

Matching 13.0 10.3 11.7
Reasoning 87.0 89.7 88.3

Summary 8.4 15.9 12.1
Logic 74.5 70.4 72.5
Arithmetic 5.1 3.6 4.4
Commonsense 31.5 35.9 33.7

Single sentence 17.1 13.7 15.4
Multiple sentences 82.9 86.3 84.6

Table 4.5: Distribution (%) of question types.

Dialogues in DREAM are generally clean and mostly error-free since they

are carefully designed by educational experts. However, it is not guaranteed

that each dialogue is written or proofread by a native speaker. Besides, dia-

logues tend to be more proper and less informal for exam purposes. To have

a rough estimation of the quality of dialogues in DREAM and the differences

between these dialogues and more casual ones in movies or TV shows, we run a

proofreading tool – Grammarly2 – on all the dialogues from the annotated 25%

instances of the development set and the same size (20.7k tokens) of dialogues

from Friends, a famous American TV show whose transcripts are commonly used

for dialogue understanding (Chen and Choi, 2016; Ma et al., 2018). As shown

in Table 4.6, there exist fewer spelling mistakes and the overall score is slightly

higher than that of the dialogues in Friends. Based on the evaluated instances,

articles and verb forms are the two most frequent grammar error categories (10

and 8, respectively, out of 23) in DREAM. Besides, the language tends to be less

precise in DREAM, indicated by the number of vocabulary suggestions. For

example, experts tend to use expressions such as “really hot”, “really beautiful”,
2https://app.grammarly.com.
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“very bad”, and “very important” instead of more appropriate yet more advanced

adjectives that might hinder reading comprehension of language learners with

smaller vocabularies. According to the explanations provided by the tool, the

readability scores for both datasets fall into the same category “Your text is very

simple and easy to read, likely to be understood by an average 5th-grader (age 10)”.

Metric DREAM Friends

# of spelling errors 11 146
# of grammar errors 23 16
# of conciseness suggestions 6 2
# of vocabulary suggestions 18 3

General Performance 98.0 95.0
Readability Score 93.7 95.3

Table 4.6: Comparison of the quality of dialogues from DREAM and Friends (a
TV show).

4.2 Approaches

We formally introduce the dialogue-based reading comprehension task and no-

tations in Section 4.2.1. To investigate the effects of different kinds of general

world knowledge and dialogue structure, we incorporate them into rule-based

approaches (Section 4.2.2) as well as non-neural (Section 4.2.3) and neural (Sec-

tion 4.2.4) machine learning approaches. We describe in detail preprocessing and

training in Section 4.2.5.

4.2.1 Problem Formulation and Notations

We start with a formal definition of the dialogue-based multiple-choice

reading comprehension task. An n-turn dialogue D is defined as D =
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{s1 : t1, s2 : t2, . . . , sn : tn}, where si represents the speaker ID (e.g., “M” and “W”),

and ti represents the text of the ith turn. Let Q denote the text of question, and

O1..3 denote the text of three answer options. The task is to choose the correct

one from answer options O1..3 associated with question Q given dialogue D. In

this chapter, we regard this task as a three-class classification problem, each class

corresponding to an answer option.

For convenience, we define the following notations, which will be referred

in the rest of this chapter. Let Ds denote the turns spoken by speaker s in D.

Formally, Ds = {si1 : ti1 , si2 : ti2 , . . . , sim : tim} where {i1, i2, . . . , im} = {i | si = s} and

i1 < i2 < . . . < im. In particular, s = ∗ denotes all the speakers. WDs and WOi denote

the ordered set of the running words (excluding punctuation marks) in Ds and

Oi respectively. Questions designed for dialogue-based reading comprehension

often focus on a particular speaker. If there is exactly one speaker mentioned in a

question, we use sQ to denote this target speaker. Otherwise, sQ = ∗. For example,

given the dialogue in Table 4.2, sQ =“M” for Question 1 and 2, and sQ = ∗ for

Question 3.

4.2.2 Rule-Based Approaches

We first attempt to incorporate dialogue structure information into sliding window

(SW), a rule-based approach developed by Richardson et al. (2013). This approach

matches a bag of words constructed from a question Q and one of its answer

option Oi with a given document, and calculates the TF-IDF style matching score

for each answer option.

Let D̂s, Q̂, and Ôi be the unordered set of distinct words (excluding punctua-
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tion marks) in Ds, Q, and Oi, respectively. Instead of only regarding dialogue D

as a non-conversational text snippet, we also pay special attention to the context

that is relevant to the target speaker mentioned in the question. Therefore, given

a target speaker sQ, we propose to compute a speaker-focused sliding window

score for each answer option Oi, by matching a bag of words constructed from Q

and Oi with DsQ (i.e., turns spoken by sQ). Given speaker s, we formally define

the sliding window score sw of Oi as:

sws
i = max

j

∑
k=1...|Ti |


ics(WDs

j+k) if WDs

j+k ∈ Ti

0 otherwise
(4.1)

where ics(w) = log
(
1 + 1∑

i 1(WDs
i =w)

)
, Ti = Ôi ∪ Q̂, and WDs

i denotes the i-th word

in WDs . Based on the above definitions, we can regard sw∗i as the general score

defined in the original sliding window approach, and swsQ

i represents the speaker-

focused sliding window score considering the target speaker sQ.

Since sliding window score ignores long-range dependencies, Richardson

et al. (2013) introduce a distance-based variation (DSW), in which a word-distance

based score is subtracted from the sliding window score to arrive at the final

score. Similarly, we calculate the speaker-focused distance-based score given a

(Q, Oi) pair and sQ, by counting the distance between the occurrence of a word

in Q and a word in Oi in DsQ . More formally, given speaker s and a set of stop

words3 U, the distance-based score d of Oi is defined as

ds
i =


1 if |I s

Q| = 0 or |I s
Oi
| = 0

δs
i

|WDs
|−1 otherwise

(4.2)

3We use the list of stop words from NLTK (Bird and Loper, 2004).
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where I s
Q = (Q̂ ∩ D̂s) − U, I s

Oi
= (Ôi ∩ D̂s) − Q̂ − U, and δs

i is the minimum number

of words between an occurrence of a question word and an answer option word

in WDs , plus one. The formal definition of δs
i is as follows.

δs
i = min

WDs
j ∈I s

Q,W
Ds
k ∈I s

Oi

| j − k| + 1 (4.3)

Based on the above definitions, we can regard d∗i as the distance-based score

defined in the original sliding window approach, and dsQ

i represents the speaker-

focused distance-based score considering speaker sQ. In addition, the final

distance-based sliding window score of Oi (Richardson et al., 2013) can be formu-

lated as

sw∗i − d∗i (4.4)

Compared to (4.4) that only focuses on the general (or speaker-independent)

information (i.e., sw∗i and d∗i ), we can capture general and speaker-focused infor-

mation (i.e. swsQ

i and dsQ

i ) simultaneously by averaging them:

swsQ
i + sw∗i

2
−

dsQ
i + d∗i

2
(4.5)

Since a large percentage of questions cannot be solved by word-level match-

ing, we also attempt to incorporate general world knowledge into our rule-based

method. We calculate css
i , the maximum cosine similarity between Oi and consec-

utive words of the same length in WDs , as:

css
i = max

j
cos

(
WOi ,WDs

j... j+|WOi |−1

)
(4.6)

where x is obtained by averaging the embeddings of the constituent words in

x. Here we use ConceptNet embeddings (Speer et al., 2017) since they leverage
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the knowledge graph that focuses on general world knowledge. Following (4.5),

we capture both general and speaker-focused semantic information within a

dialogue as follows.
cssQ

i + cs∗i
2

(4.7)

To make the final answer option selection, our rule-based method combines

(4.5) and (4.7):

arg max
i

swsQ
i + sw∗i

2
−

dsQ
i + d∗i

2
+

cssQ
i + cs∗i

2
(4.8)

4.2.3 Feature-Based Classifier

To explore what features are effective for dialogue understanding, we first con-

sider a gradient boosting decision tree (GBDT) classifier. Besides the conventional

bag-of-words features, we primarily focus on features related to general world

knowledge and dialogue structure.

• Bag of words of each answer option.

• Features inspired by rule-based approaches: we adopt the features intro-

duced in Section 4.2.2, including speaker-independent scores (i.e., sw∗i and

d∗i ) and speaker-focused scores (i.e., swsQ

i and dsQ

i ).

• Matching position: psQ

1..3 and p∗1..3, where ps
i is the last position (in percent-

age) of a word in Ds that is also mentioned in Oi; 0 if none of the words in Ds

is mentioned in Oi. We consider matching position due to our observation

of the existence of concessions and negotiations in dialogues (Amgoud

et al., 2007). We assume the facts or opinions expressed near the end of a

dialogue tend to be more critical for us to answer a question.
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• Pointwise mutual information (PMI): pmisQ

max,1..3, pmi∗max,1..3, pmisQ

min,1..3,

pmi∗min,1..3, pmisQ

avg,1..3, and pmi∗avg,1..3, where pmis
f ,i is defined as

pmis
f ,i =

∑
j log fk

C2(WOi
j ,WDs

k )

C1(WOi
j )C1(WDs

k )

|WOi |
(4.9)

C1(w) denotes the word frequency of w in external copora (we use Reddit

posts (Tan and Lee, 2015)), and C2(w1,w2) represents the co-occurrence

frequency of word w1 and w2 within a distance < K in external copora.

We use PMI to evaluate the relatedness between the content of an answer

option and the target-speaker-focused context based on co-occurrences of

words in external corpora, inspired by previous studies on narrative event

chains (Chambers and Jurafsky, 2008).

• ConceptNet relations (CR): cr1..3,1..|R|. R = {r1, r2, . . .} is the set of Concept-

Net relation types (e.g., “CapableOf” and “PartOf”). cri, j is the number of

relation triples (w1, r j, w2) that appear in the ConceptNet (Speer et al., 2017),

where w1 represents a word in answer option Oi, w2 represents a word in

D, and the relation type r j ∈ R. Similar to the motivation of using PMI,

we use CR to capture the association between an answer option and the

source dialogue based on raw co-occurrence counts in the commonsense

knowledge base.

• ConceptNet embeddings (CE): besides the lexical similarity based on

string matching, we also calculate cs∗1..3 and cssQ

1..3, where cs∗i and cssQ

i repre-

sent the maximum cosine similarity between Oi and consecutive words of

the same length in D and DsQ , respectively (Expression 4.6 in Section 4.2.2).

We use ConceptNet embeddings (Speer et al., 2017) since they leverage the

general world knowledge graph.
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4.2.4 End-To-End Neural Network

Our end-to-end neural model is based on a generative pre-trained language

model (LM). We follow the framework of finetuned transformer LM (FTLM) (Rad-

ford et al., 2018) and make modifications for dialogue-based reading comprehen-

sion.

START dialogue DELIMITER option 1 ENDquestion

START dialogue option 2 ENDquestion DELIMITER

START dialogue option 3 ENDquestion DELIMITER

Transformer

Transformer

Transformer

Linear

Linear

Linear

Softm
ax

text embed

position embed

speaker embed

Figure 4.1: Overall neural network framework (Section 4.2.4).

The training procedure of FTLM consists of two stages. The first stage is to

learn a high-capacity language model on a large-scale unsupervised corpus of

tokensU = {u1, . . . , un} by maximizing the following likelihood:

LLM(U) =
∑

i

log P(ui | ui−k, . . . , ui−1; Θ) (4.10)

where k is the context window size, and the conditional probability P is modeled

by a multi-layer transformer decoder (Liu et al., 2018) with parameters Θ. In the

second stage, the model is adapted to a labeled dataset C, where each instance

consists of a sequence of input tokens x1, . . . , xm with a label y, by maximizing:

L(C) =
∑
x,y

log P(y | x1, . . . , xm) + λLLM(C) (4.11)

where P(y | x1, . . . , xm) is obtained by a linear + softmax layer over the final trans-

former block’s activation, and λ is the weight for language model. For multiple-

choice reading comprehension, the input tokens x1, . . . , xm come from the con-
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catenation of a start token, dialogue, question, a delimiter token, answer option,

and an end token; y indicates if the answer option is correct.

Since the original FTLM framework already leverages rich linguistic infor-

mation from a large unlabeled corpus, which can be regarded as a type of tacit

general world knowledge, we investigate whether additional dialogue structure

can further improve this strong baseline. We propose speaker embedding to better

capture dialogue structure. Specifically, in the original framework, given an input

context (u−k, . . . , u−1) of the transformer, the encoding of u−i is we(u−i)+ pe(i), where

we(·) is the word embedding, and pe(·) is the position embedding. When adapt-

ing Θ to DREAM, we change the encoding to we(u−i) + pe(i) + se(u−i, sQ) where

the speaker embedding se(u−i, sQ) is (a) 0 if the token u−i is not in the dialogue

(i.e. it is either a start/end/delimiter token or a token in the question/option);

(b) etarget if the token is spoken by sQ; (c) erest if the token is in the dialogue but

not spoken by sQ. etarget and erest are trainable and initialized randomly. We show

the overall framework in Figure 4.1.

4.2.5 Preprocessing and Training Details

For all the models, we conduct coreference resolution to determine speaker

mentions of sQ based on simple heuristics. Particularly, we map three most

common speaker abbreviations (i.e., “M”; “W” and “F”) that appear in dialogues

to their eight most common corresponding mentions (i.e., “man”, “boy”, “he”,

and “his”; “woman”, “girl”, “she”, and “her”) in questions. We keep speaker

abbreviations unchanged, since neither replacing them with their corresponding

full forms nor removing them contributes to the performance based on our
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experiments.

For the neural model mentioned in Section 4.2.4, most of our parameter

settings follow Radford et al. (2018). We adopt the same preprocessing procedure

and use their publicly released language model, which is pre-trained on the

BooksCorpus dataset (Zhu et al., 2015). We set the batch size to 8, language

model weight λ to 2, and maximum epochs of training to 10.

For other models, we use the following preprocessing steps. We tokenize and

lowercase the corpus, convert number words to numeric digits, normalize time

expressions to 24-hour numeric form, and address negation by removing inter-

rogative sentences that receive “no” as the reply. We use the gradient boosting

classifier implemented in the scikit-learn toolkit (Pedregosa et al., 2011). We set

the number of boosting iterations to 600 and keep the rest of hyperparameters

unchanged. The distance upper bound K for PMI is set to 10.

We perform several runs of machine learning models (Section 4.2.3 and Sec-

tion 4.2.4) with randomness introduced by different random seeds and/or GPU

non-determinism and select the model or models (for ensemble) that perform

best on the development set.

4.3 Experiment

4.3.1 Baselines

We implement several baselines, including rule-based methods and state-of-the-

art neural models.
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Method Dev Test

Random 32.8 33.4
Word Matching (WM) (Yih et al., 2013) 41.7 42.0
Sliding Window (SW) (Richardson et al., 2013) 42.6 42.5
Distance-Based Sliding Window (DSW) (Richardson et al., 2013) 44.4 44.6

Stanford Attentive Reader (SAR) (Chen et al., 2016) 40.2 39.8
Gated-Attention Reader (GAR) (Dhingra et al., 2017) 40.5 41.3
Co-Matching (CO) (Wang et al., 2018d) 45.6 45.5
Finetuned Transformer LM (FTLM) (Radford et al., 2018) 55.9 55.5

Our Approaches:
DSW++ (DSW w/ Dialogue Structure and ConceptNet Embedding) 51.4 50.1
GBDT++ (GBDT w/ Features of Dialogue Structure and General World Knowledge) 53.3 52.8
FTLM++ (FTLM w/ Speaker Embedding) 57.6 57.4
Ensemble of 3 FTLM++ 58.1 58.2
Ensemble of 1 GBDT++ and 3 FTLM++ 59.6 59.5

Human Performance 93.9? 95.5?

Ceiling Performance 98.7? 98.6?

Table 4.7: Performance in accuracy (%) on the DREAM dataset. Performance
marked by ? is reported based on 25% annotated questions from the develop-
ment and test sets.

• Word Matching This strong baseline (Yih et al., 2013) selects the answer

option that has the highest count of overlapping words with the given

dialogue.

• Sliding Window We implement the sliding window approach (i.e.,

arg maxi sw∗i ) and its distance-based variation DSW (i.e., arg maxi sw∗i −

d∗i ) (Richardson et al., 2013) introduced in Section 4.2.2.

• Enhanced Distance-Based Sliding Window (DSW++) We also use gen-

eral world knowledge and speaker-focused information to improve the orig-

inal sliding window baseline, formulated in Expression 4.8 (Section 4.2.2).

• Stanford Attentive Reader This neural baseline compares each candidate

answer (i.e., entity) representation to the question-aware document repre-

sentation built with attention mechanism (Hermann et al., 2015; Chen et al.,

2016). Lai et al. (2017) add a bilinear operation to compare document and

answer option representations to answer multiple-choice questions.
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• Gated-Attention Reader The baseline models multiplicative question-

specific document representations based on a gated-attention mecha-

nism (Dhingra et al., 2017), which are then compared to each answer

option (Lai et al., 2017).

• Co-Matching This state-of-the-art multiple-choice reading comprehension

model explicitly treats question and answer option as two sequences and

jointly matches them against a given document (Wang et al., 2018d).

• Finetuned Transformer LM This is a general task-agnostic model intro-

duced in Section 4.2.4, which achieves the best reported performance on

several tasks requiring multi-sentence reasoning (Radford et al., 2018).

We do not investigate other ways of leveraging pre-trained deep models

such as adding ELMo representations (Peters et al., 2018) as additional features

to a neural model since recent studies show that directly fine-tuning a pre-

trained language model such as FTLM is significantly superior on multiple-

choice reading comprehension tasks (Radford et al., 2018; Chen et al., 2019). We

do not apply more recent extractive models such as AOA (Cui et al., 2017) and

QANet (Yu et al., 2018) since they aim at precisely locating a span in a document.

When adapted to solve questions with abstractive answer options, extractive

models generally tend to perform less well (Chen et al., 2016; Dhingra et al., 2017;

Lai et al., 2017).

4.3.2 Results and Analysis

We report the performance of the baselines introduced in Section 4.3.1 and our

proposed approaches in Table 4.7. We report the averaged accuracy of two
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annotators as the human performance. The proportion of valid questions (i.e., an

unambiguous question with a unique correct answer option provided) that are

manually checked by annotators on the annotated test and development sets is

regarded as the human ceiling performance.

Surface matching is insufficient. Experimental results show that neural

models that primarily exploit surface-level information (i.e., SAR, GAR, and CO)

attain a performance level close to that of simple rule-based approaches (i.e.,

WM, SW, and DSW). The highest accuracy achieved by CO is 45.5%, a similar

level of performance to the rule-based method DSW (44.6%).

It is helpful to incorporate general world knowledge and dialogue struc-

ture. We see a significant gain 5.5% in accuracy when enhancing DSW us-

ing general world knowledge from ConceptNet embeddings and considering

speaker-focused information (Section 4.2.2). FTLM, which leverages rich external

linguistic knowledge from thousands of books, already achieves a much higher

accuracy 55.5% compared to previous state-of-the-art machine comprehension

models, indicating the effectiveness of general world knowledge. Experimen-

tal results show that our best single model FTLM++ significantly outperforms

FTLM (p-value = 0.03), illustrating the usefulness of additional dialogue struc-

ture. Compared to the state-of-the-art neural reader Co-Matching that primarily

explores surface-level information (45.5%), the tacit general world knowledge

(in the pre-trained language model) and dialogues structure in FTLM++ lead to

an absolute gain of 11.9% in accuracy.

Ensembling different types of methods can bring further improvements.

We employ the majority vote strategy to obtain the ensemble model performance.

While GBDT++ (52.8%) itself does not outperform FTLM++, GBDT++ can serve
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as a supplement to FTLM++ as they leverage different types of general world

knowledge and model architectures. We achieve the highest accuracy 59.5% by

ensembling one GBDT++ and three FTLM++.

4.3.3 Ablation Tests

We conduct ablation tests to evaluate the individual components of our proposed

approaches (Table 4.8). In Table 4.9, we summarize the involved types of dialogue

structure and general world knowledge in our approaches.

Dialogue Structure Specifically, we observe 1.4% drop in accuracy if we set the

target speaker sQ to ∗ for all questions when we apply DSW++. We observe

a similar performance drop when we remove speaker-focused features from

GBDT++. In addition, removing speaker embeddings from FTLM++ leads to

1.7% drop in accuracy (in this case, the model becomes the original FTLM). These

results consistently indicate the usefulness of dialogue structure for dialogue

understanding.

General World Knowledge We also investigate the effects of general world

knowledge. The accuracy of DSW++ drops by 4.7% if we remove ConceptNet

embeddings (CE) by deleting the last term of Expression 4.8 in Section 4.2.2.

Additionally, the accuracy of GBDT++ drops by 6.2% if we remove all the general

world knowledge features (i.e., ConceptNet embeddings/relations and PMI),

leading to prediction failures on questions such as “What do we learn about the

man?” whose correct answer option “He is health-conscious.” is not explicitly

mentioned in the source dialogue “M: We had better start to eat onions frequently,

Linda. W: But you hate onions, don’t you? M: Until I learned from a report from today’s
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paper that they protect people from flu and colds. After all, compared with health, taste

is not so important.”. Moreover, if we train FTLM++ with randomly initialized

transformer weights instead of weights pre-trained on the external corpus, the

accuracy drops dramatically to 36.2%, which is only slightly better than a random

baseline.

Method Accuracy ∆

DSW++ 51.4 −

− dialogue structure 50.0 -1.4
− CE 46.7 -4.7

GBDT++ 53.3 −

− bag of words 51.6 -1.7
− rule-based features 51.2 -2.1
−matching position 53.0 -0.3
− dialogue structure 51.9 -1.4
− PMI 51.4 -1.9
− CR 52.7 -0.6
− CE 52.7 -0.6
− PMI, CR, CE 47.1 -6.2

FTLM++ 57.6 −

− speaker embedding 55.9 -1.7
− LM pre-training 36.2 -21.4

Table 4.8: Ablation tests on the development set (%). Minus (−) indicates percent-
age decrease.

Dialogue Structure General World Knowledge

DSW++ speaker-focused scores CE

GBDT++ speaker-focused features CE, CR, and PMI

FTLM++ speaker embedding pre-trained LM

Table 4.9: Types of dialogue structure and general world knowledge investigated
in our approaches.

4.3.4 Error Analysis

Impact of Longer Turns The number of dialogue turns has a significant impact

on the performance of FTLM++. As shown in Figure 4.2, its performance reaches
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the peak while the number of turns ranges from 0 to 10 while it suffers severe

performance drops when the given dialogue contains more turns. Both DSW++

(56.8%) and GBDT++ (57.4%) outperform FTLM++ (55.7%) when the number of

turns ranges from 10 to 48. To deal with lengthy context, it may be helpful to

first identify relevant sentences based on a question and its associated answer

options rather than using the entire dialogue context as input.

1 

[0, 10] (10, 20] (20, 30] (30, 48]
35

40

45

50

55

60

A
cc

ur
ac

y 
(%

)

Number of turns

 DSW++
 GBDT++
 FTLM++

Figure 4.2: Performance comparison of different number of turns on the test set.

Impact of Confusing Distractors For 54.5% of questions on the development set,

the fuzzy matching score (Sikes, 2007) of at least one distractor answer option

against the dialogue is higher than the score of the correct answer option. For

questions that all models (i.e., DSW++, GBDT++, and FTLM++) fail to answer

correctly, 73.0% of them contain at least one such confusing distractor answer op-

tion. The causes of this kind of errors can be roughly divided into two categories.

First, the distractor is wrongly associated with the target speaker/s mentioned

in the question (e.g., answer option A and C in D2-Q3 in Table 4.2). Second, al-

though the claim in the distractor is supported by the dialogue, it is irrelevant to
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the question (e.g., D1-Q1-B in Table 4.1). A promising direction to solve this prob-

lem could be the construction of speaker-focused event chains (Chambers and

Jurafsky, 2008) and advanced dialogue-specific coreference resolution systems

for more reliable evidence context detection in a dialogue.

Impact of Question Types We further report the performance of the best single

model FTLM++ and the GBDT++ baseline on the categories defined in Sec-

tion 4.1.2 (Table 4.10). Not surprisingly, both models perform worse than random

guessing on math problems. While most of the math problems can be solved by

one single linear equation, it is still difficult to apply recent neural math word

problem solvers (Huang et al., 2018; Wang et al., 2018a) due to informal dialogue-

based problem descriptions and the requirement of commonsense inference. For

example, given the dialogue:

“W: The plane arrives at 10:50. It is already 10:40 now. Be quick! M: Relax. Your watch

must be fast. There are still twenty minutes left.”,

we need prior knowledge to infer that the watch of the man is showing incorrect

time 10:40. Instead, 10:50 should be used as the reference time with the time

interval “twenty minutes left” together to answer the question “What time is it

now?”.

Results show that GBDT++ is superior to the fine-tuned language model

on the questions under the category matching (68.1% vs. 57.0%) and the latter

model is more capable of answering implicit questions (e.g., under the category

summary, logic, and commonsense) which require aggregation of information from

multiple sentences, the understanding of the entire dialogue, or the utilization

of world knowledge. Therefore, it might be useful to leverage the strengths of

individual models to solve different types of questions.
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Question Type FTLM++ GBDT++

Matching 57.0 68.1
Reasoning 56.8 49.4

Summary 73.6 47.1
Logic 55.0 49.7
Arithmetic 30.2 24.5
Commonsense 53.4 41.7

Single sentence 56.5 63.3
Multiple sentences 56.9 49.5

Table 4.10: Accuracy (%) by question type on the annotated development subset.

4.4 Related Work

We divide reading comprehension datasets into three categories based on the

types of answers.

SQuAD NarrativeQA CoQA RACE DREAM (this work)

Answer type extractive abstractive abstractive multiple-choice multiple-choice
Source document type written text written text written text written text dialogue
# of source documents 536 1,572 8,399 27,933 6,444
Average answer length 3.2 4.7 2.7 5.3 5.3

Extractive (%) 100.0 73.6 66.8 13.0 16.3
Abstractive (%) 0.0 26.4 33.2 87.0 83.7

Table 4.11: Distribution of answer (or correct answer option) types in three kinds
of reading comprehension datasets. Statistics of other datasets come from Reddy
et al. (2019), Kočiskỳ et al. (2018), and Lai et al. (2017).

4.4.1 Extractive and Abstractive Datasets

In recent years, we have seen increased interest in large-scale cloze/span-based

reading comprehension dataset construction (Hermann et al., 2015; Hill et al.,

2016; Onishi et al., 2016; Rajpurkar et al., 2016; Bajgar et al., 2016; Nguyen et al.,

2016; Trischler et al., 2017; Joshi et al., 2017; Choi et al., 2018). We regard them

as extractive since candidate answers are usually short spans from source docu-
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ments. State-of-the-art neural models with attention mechanisms already achieve

very high performance based on local lexical information. Recently researchers

work on the construction of spoken span-based datasets (Lee et al., 2018; Li et al.,

2018a) by applying text-to-speech technologies or recruiting human speakers

based on formal written document-based datasets such as SQuAD (Rajpurkar

et al., 2016). Some span-based conversation datasets are constructed from a

relatively small size of dialogues from TV shows (Chen and Choi, 2016; Ma et al.,

2018).

Considering the limitations in extractive datasets, answers in abstractive

datasets such as MS MARCO (Nguyen et al., 2016), SearchQA (Dunn et al.,

2017), and NarrativeQA (Kočiskỳ et al., 2018) are human crowdsourced based

on source documents or summaries. Concurrently, there is a growing interest

in conversational reading comprehension such as CoQA (Reddy et al., 2019).

Since annotators tend to copy spans as answers (Reddy et al., 2019), the majority

of answers are still extractive in these datasets (Table 4.11). Compared to the

datasets mentioned above, most of the correct answer options (83.7%) in DREAM

are free-form text.

4.4.2 Multiple-Choice Datasets

We primarily discuss the multiple-choice datasets in which answer options are

not restricted to extractive text spans in the given document. Instead, most of

the correct answer options are abstractive (Table 4.11). Multiple-choice datasets

involve extensive human involvement for problem generation during crowd-

sourcing (i.e., questions, correct answer option, and distractors). Besides surface
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matching, a significant portion of questions require multiple-sentence reason-

ing and external knowledge (Richardson et al., 2013; Mostafazadeh et al., 2016;

Khashabi et al., 2018; Ostermann et al., 2018).

Besides crowdsourcing, some datasets are collected from examinations de-

signed by educational experts (Penas et al., 2014; Shibuki et al., 2014; Tseng et al.,

2016; Clark et al., 2016; Lai et al., 2017; Mihaylov et al., 2018), which aim to test

human examinees. There are various types of complicated questions such as

math word problems, summarization, logical reasoning, and sentiment analysis.

Since we can adopt more objective evaluation criteria such as accuracy, these

questions are usually easy to grade. Besides, questions from examinations are

generally clean and high-quality. Therefore, human performance ceiling on this

kind of datasets is much higher (e.g., 94.5% on RACE (Lai et al., 2017) and 98.6%

on DREAM in accuracy) than that of datasets built by crowdsourcing.

In comparison, we present the first multiple-choice dialogue-based dataset

from examinations that contains a large percentage of questions that require

multiple sentence inference. To the best of our knowledge, DREAM also contains

the largest number of questions involving commonsense reasoning compared

to other examination datasets.

4.5 Chapter Summary

We present DREAM, the first multiple-choice dialogue-based reading compre-

hension dataset from English language examinations. Besides the multi-turn

multi-party dialogue context, 85% of questions require multiple-sentence reason-

ing, and 34% of questions also require commonsense knowledge, making this

55



task very challenging. We apply several popular reading comprehension models

and find that surface-level information is insufficient. We incorporate general

world knowledge and dialogue structure into rule-based and machine learning

methods and show the effectiveness of these factors, suggesting a promising

direction for dialogue-based reading comprehension.
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CHAPTER 5

INVESTIGATING PRIOR KNOWLEDGE FOR CHINESE READING

COMPREHENSION

“Language is, at best, a means of

directing others to construct

similar-thoughts from their own prior

knowledge.”

Adams and Bruce (1982)

In the previous two chapters, we present our efforts in the development of tech-

niques tackling a variety of free-form multiple-choice MRC tasks that contain

a significant percentage of questions focusing on the implicitly expressed facts,

events, opinions, or emotions in the given text (Richardson et al., 2013; Lai et al.,

2017; Ostermann et al., 2018; Khashabi et al., 2018; Sun et al., 2019a). Generally,

we require the integration of our own prior knowledge and the information

presented in the given text to answer these questions, posing significant chal-

lenges for MRC systems. However, until recently, progress in the development

of techniques for addressing this kind of MRC task for Chinese has lagged be-

hind their English counterparts. A primary reason is that most previous work

focuses on constructing MRC datasets for Chinese in which most answers are

either spans (Cui et al., 2016; Li et al., 2016; Cui et al., 2018a; Shao et al., 2018)

or abstractive texts (He et al., 2017) merely based on the information explicitly

expressed in the provided text.

With a goal of developing similarly challenging, but free-form multiple-choice

datasets, and promoting the development of MRC techniques for Chinese, we

57



introduce in this chapter the first free-form multiple-Choice Chinese machine

reading Comprehension dataset (C3) that not only contains multiple types of

questions but also requires both the information in the given document and prior

knowledge to answer questions. In particular, for assessing model generalizabil-

ity across different domains, C3 includes a dialogue-based task C3
D in which the

given document is a dialogue, and a mixed-genre task C3
M in which the given

document is a mixed-genre text that is relatively formally written. All problems

are collected from real-world Chinese-as-a-second-language examinations care-

fully designed by experts to test the reading comprehension abilities of language

learners of Chinese.

We perform an in-depth analysis of what kinds of prior knowledge are

needed for answering questions correctly in C3 and two representative free-

form multiple-choice MRC datasets for English (Lai et al., 2017; Sun et al., 2019a),

and to what extent. We find that solving these general-domain problems requires

linguistic knowledge, domain-specific knowledge, and general world knowl-

edge, the latter of which can be further broken down into eight types such as

arithmetic, connotation, cause-effect, and implication. These free-form MRC

datasets exhibit similar characteristics in that (i) they contain a high percentage

(e.g., 86.8% in C3) of questions requiring knowledge gained from the accompany-

ing document as well as at least one type of prior knowledge and (ii) regardless

of language, dialogue-based MRC tasks tend to require more general world

knowledge and less linguistic knowledge compared to tasks accompanied with

relatively formally written texts. Specifically, compared to existing MRC datasets

for Chinese (He et al., 2017; Cui et al., 2018b), C3 requires more general world

knowledge (57.3% of questions) to arrive at the correct answer options.
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We implement rule-based and popular neural approaches to the MRC task

and find that there is still a significant performance gap between the best-

performing model (68.5%) and human readers (96.0%), especially on problems

that require prior knowledge. We find that the existence of wrong answer options

that highly superficially match the given text plays a critical role in increasing the

difficulty level of questions and the demand for prior knowledge. Furthermore,

additionally introducing 94k training instances based on translated free-form

multiple-choice datasets for English can only lead to a 4.6% improvement in

accuracy, still far from closing the gap to human performance. Our hope is that

C3 can serve as a platform for researchers interested in studying how to leverage

different types of prior knowledge for in-depth text comprehension and facilitate

future work on crosslingual and multilingual machine reading comprehension.

This chapter is based on Sun et al. (2020b).

5.1 Data

In this section, we describe the construction of C3 (Section 5.1.1). We also analyze

the data (Section 5.1.2) and the types of prior knowledge needed for the MRC

tasks (Section 5.1.3).

5.1.1 Collection Methodology and Task Definitions

We collect the general-domain problems from Hanyu Shuiping Kaoshi (HSK)

and Minzu Hanyu Kaoshi (MHK), which are designed for evaluating the Chinese

listening and reading comprehension ability of second-language learners such
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1928年，经徐志摩介绍，时任中国公学校
长的胡适聘用了沈从文做讲师，主讲大学

一年级的现代文学选修课。

In 1928, recommended by Hsu Chih-Mo, Hu Shih, who was the pres-
ident of the previous National University of China, employed Shen
Ts’ung-wen as a lecturer of the university in charge of teaching the op-
tional course of modern literature.

当时，沈从文已经在文坛上崭露头角，

在社会上也小有名气，因此还未到上课

时间，教室里就坐满了学生。上课时间

到了，沈从文走进教室，看见下面黑压压

一片，心里陡然一惊，脑子里变得一片空

白，连准备了无数遍的第一句话都堵在嗓

子里说不出来了。

At that time, Shen already made himself conspicuous in the literary
world and was a little famous in society. For this sake, even before the
beginning of class, the classroom was crowded with students. Upon the
arrival of class, Shen went into the classroom. Seeing a dense crowd of
students sitting beneath the platform, Shen was suddenly startled and
his mind went blank. He was even unable to utter the first sentence he
had rehearsed repeatedly.

他呆呆地站在那里，面色尴尬至极，双

手拧来拧去无处可放。上课前他自以为成

竹在胸，所以就没带教案和教材。整整10
分钟，教室里鸦雀无声，所有的学生都好

奇地等着这位新来的老师开口。沈从文深

吸了一口气，慢慢平静了下来，原先准备

好的东西也重新在脑子里聚拢，然后他开

始讲课了。不过由于他依然很紧张，原本

预计一小时的授课内容，竟然用了不到15
分钟就讲完了。

He stood there motionlessly, extremely embarrassed. He wrung
his hands without knowing where to put them. Before class, he be-
lieved that he had a ready plan to meet the situation so he did not bring
his teaching plan and textbook. For up to 10 minutes, the classroom
was in perfect silence. All the students were curiously waiting for the
new teacher to open his mouth. Breathing deeply, he gradually calmed
down. Thereupon, the materials he had previously prepared gathered
in his mind for the second time. Then he began his lecture. Neverthe-
less, since he was still nervous, it took him less than 15 minutes to finish
the teaching contents he had planned to complete in an hour.

接下来怎么办？他再次陷入了窘境。无奈

之下，他只好拿起粉笔在黑板上写道：我

第一次上课，见你们人多，怕了。

What should he do next? He was again caught in embarrassment.
He had no choice but to pick up a piece of chalk before writing several
words on the blackboard: This is the first time I have given a lecture. In
the presence of a crowd of people, I feel terrified.

顿时，教室里爆发出了一阵善意的笑声，

随即一阵鼓励的掌声响起。得知这件事之

后，胡适对沈从文大加赞赏，认为他非常

成功。有了这次经历，在以后的课堂上，

沈从文都会告诫自己不要紧张，渐渐地，

他开始在课堂上变得从容起来。

Immediately, a peal of friendly laughter filled the classroom.
Presently, a round of encouraging applause was given to him. Hear-
ing this episode, Hu heaped praise upon Shen, thinking that he was
very successful. Because of this experience, Shen always reminded him-
self of not being nervous in his class for years afterwards. Gradually, he
began to give his lecture at leisure in class.

Q1 第2段中，“黑压压一片”指的是： Q1 In paragraph 2, “a dense crowd” refers to
A. 教室很暗 A. the light in the classroom was dim.
B. 听课的人多? B. the number of students attending his lecture was large. ?
C. 房间里很吵 C. the room was noisy.
D. 学生们发言很积极 D. the students were active in voicing their opinions.
Q2 沈从文没拿教材，是因为他觉得： Q2 Shen did not bring the textbook because he felt that
A. 讲课内容不多 A. the teaching contents were not many.
B. 自己准备得很充分? B. his preparation was sufficient. ?
C. 这样可以减轻压力 C. his mental pressure could be reduced in this way.
D. 教材会限制自己的发挥 D. the textbook was likely to restrict his ability to give a lecture.
Q3 看见沈从文写的那句话，学生们： Q3 Seeing the sentence written by Shen, the students
A. 急忙安慰他 A. hurriedly consoled him.
B. 在心里埋怨他 B. blamed him in mind.
C. 受到了极大的鼓舞 C. were greatly encouraged.
D. 表示理解并鼓励了他? D. expressed their understanding and encouraged him. ?
Q4 上文主要谈的是： Q4 The passage above is mainly about
A. 中国教育制度的发展 A. the development of the Chinese educational system.
B. 紧张时应如何调整自己 B. how to make self-adjustment if one is nervous.
C. 沈从文第一次讲课时的情景? C. the situation where Shen gave his lecture for the first time. ?
D. 沈从文如何从作家转变为教师的 D. how Shen turned into a teacher from a writer.

Table 5.1: A C3
M problem and its English translation (?: the correct option).
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F: How is it going? Have you bought your ticket?
M: There are so many people at the railway station. I have waited in line all day long. However, when my

turn comes, they say that there is no ticket left unless the Spring Festival is over.
F: It doesn’t matter. It is all the same for you to come back after the Spring Festival is over.
M: But according to our company’s regulation, I must go to the office on the 6th day of the first lunar month.

I’m afraid I have no time to go back after the Spring Festival, so could you and my dad come to Shanghai
for the coming Spring Festival?

F: I am too old to endure the travel.
M: It is not difficult at all. After I help you buy the tickets, you can come here directly.

Q1 What is the relationship between the speakers?
A. father and daughter.
B. mother and son. ?
C. classmates.
D. colleagues.
Q2 What difficulty has the male met?
A. his company does not have a vacation.
B. things are expensive during the Spring Festival.
C. he has not bought his ticket. ?
D. he cannot find the railway station.
Q3 What suggestion does the male put forth?
A. he invites the female to come to Shanghai. ?
B. he is going to wait in line the next day.
C. he wants to go to the company as soon as possible.
D. he is going to go home after the Spring Festival is over.

Table 5.2: English translation of a sample problem from C3
D (?: the correct option).

Metric C3
M C3

D C3

Min./Avg./Max. # of options per question 2 / 3.7 / 4 3 / 3.8 / 4 2 / 3.8 / 4
# of correct options per question 1 1 1
Min./Avg./Max. # of questions per document 1 / 1.9 / 6 1 / 1.2 / 6 1 / 1.5 / 6
Avg./Max. option length (in characters) 6.5 / 45 4.4 / 31 5.5 / 45
Avg./Max. question length (in characters) 13.5 / 57 10.9 / 34 12.2 / 57
Avg./Max. document length (in characters) 180.2 / 1,274 76.3 / 1,540 116.9 / 1,540
character vocabulary size 4,120 2,922 4,193
non-extractive correct option (%) 81.9 78.9 80.4

# of documents / # of questions
Training 3,138 / 6,013 4,885 / 5,856 8,023 / 11,869
Development 1,046 / 1,991 1,628 / 1,825 2,674 / 3,816
Test 1,045 / 2,002 1,627 / 1,890 2,672 / 3,892
All 5,229 / 10,006 8,140 / 9,571 13,369 / 19,577

Table 5.3: The overall statistics of C3. C3 = C3
M ∪ C3

D.
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as international students, overseas Chinese, and ethnic minorities. We include

problems from both real and practice exams; all are freely accessible online for

public usage.

Each problem consists of a document and a series of questions. Each question

is associated with several answer options, and EXACTLY ONE of them is correct.

The goal is to select the correct option. According to the document type, we

divide these problems into two subtasks: C3-Dialogue (C3
D), in which a dialogue

serves as the document, and C3-Mixed (C3
M), in which the given non-dialogue

document is of mixed genre, such as a story, a news report, a monologue, or an

advertisement. We show a sample problem for each type in Tables 5.1 and 5.2,

respectively.

We remove duplicate problems and randomly split the data (13,369 docu-

ments and 19,577 questions in total) at the problem level, with 60% training, 20%

development, and 20% test.

5.1.2 Data Statistics

We summarize the overall statistics of C3 in Table 5.3. We observe notable differ-

ences exist between C3
M and C3

D. For example, C3
M, in which most documents are

formally written texts, has a larger vocabulary size compared to that of C3
D with

documents in spoken language. Similar observations have been made by Sun

et al. (2019a) that the vocabulary size is relatively small in English dialogue-based

machine reading comprehension tasks. In addition, the average document length

(180.2) in C3
M is longer than that in C3

D (76.3). In general, C3 may not be suitable

for evaluating the comprehension ability of machine readers on lengthy texts
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as the average length of document C3 is relatively short compared to that in

datasets such as DuReader (He et al., 2017) (396.0) and RACE (Lai et al., 2017)

(321.9).

C3
M C3

D C3 RACE DREAM DuReader

Matching 12.0 14.3 13.2 14.7 8.7 62.0

Prior knowledge 88.0 85.7 86.8 85.3 91.3 38.0
� Linguistic 49.0 30.7 39.8 47.3 40.0 22.0
� Domain-specific 0.7 1.0 0.8 0.0 0.0 16.0
� General world 50.7 64.0 57.3 43.3 57.3 0.0

Arithmetic 3.0 4.7 3.8 3.3 1.3 0.0
Connotation 1.3 5.3 3.3 2.0 5.3 0.0
Cause-effect 14.0 6.7 10.3 2.7 3.3 0.0
Implication 17.7 20.3 19.0 24.0 26.7 0.0
Part-whole 5.0 5.0 5.0 2.7 7.3 0.0
Precondition 2.7 4.3 3.5 2.7 1.3 0.0
Scenario 9.6 24.3 17.0 7.3 21.3 0.0
Other 3.3 0.3 1.8 2.0 0.7 0.0

Single sentence 50.7 22.7 36.7 24.0 12.0 14.6
Multiple sentences 47.0 77.0 62.0 75.3 88.0 68.7
Independent 2.3 0.3 1.3 0.7 0.0 16.7

# of annotated instances 300 300 600 150 150 150

Table 5.4: Distribution (%) of types of required prior knowledge based on a
subset of test and development sets of C3, Chinese free-form abstractive dataset
DuReader (He et al., 2017), and English free-form multiple-choice datasets
RACE (Lai et al., 2017) and DREAM (Sun et al., 2019a). Answering a question
may require more than one type of prior knowledge.

5.1.3 Categories of Prior Knowledge

Previous studies on Chinese machine reading comprehension focus mainly on

the linguistic knowledge required (He et al., 2017; Cui et al., 2018a). We aim

instead for a more comprehensive analysis of the types of prior knowledge

for answering questions. We carefully analyze a subset of questions randomly

sampled from the development and test sets of C3 and arrive at the following

three kinds of prior knowledge required for answering questions. A question is
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labeled as matching if it exactly matches or nearly matches (without considering

determiners, aspect particles, or conjunctive adverbs (Xia, 2000)) a span in the

given document; answering questions in this category seldom requires any prior

knowledge.

LINGUISTIC: To answer a given question (e.g., Q 1-2 in Table 5.1 and Q3 in

Table 5.2), we require lexical/syntactic knowledge including but not limited to:

idioms, proverbs, negation, antonymy, synonymy, the possible meanings of the

word, and syntactic transformations (Nassaji, 2006).

DOMAIN-SPECIFIC: This kind of world knowledge consists of, but is not limited

to, facts about domain-specific concepts, their definitions and properties, and

relations among these concepts (Grishman et al., 1983; Hansen, 1994).

GENERAL WORLD: It refers to the general knowledge about how the world

works, sometimes called commonsense knowledge. We focus on the sort of

world knowledge that an encyclopedia would assume readers know without

being told (Lenat et al., 1985; Schubert, 2002) instead of the factual knowledge

such as properties of famous entities. We further break down general world

knowledge into eight subtypes, some of which (marked with †) are similar to

the categories summarized by LoBue and Yates (2011) for textual entailment

recognition.

• Arithmetic†: This includes numerical computation and analysis (e.g., com-

parison and unit conversion).

• Connotation: Answering questions requires knowledge about implicit

and implied sentiment towards something or somebody, emotions, and

tone (Edmonds and Hirst, 2002; Feng et al., 2013; Van Hee et al., 2018). For
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example, the following conversation: “F: Ming Yu became a manager when

he was so young! That’s impressive! M: It is indeed not easy!” is delivered in a

tone for praise.

• Cause-effect†: The occurrence of event A causes the occurrence of event B.

We usually need this kind of knowledge to solve “why” questions when a

causal explanation is not explicitly expressed in the given document.

• Implication: This category refers to the main points, suggestions, opinions,

facts, or event predictions that are not expressed explicitly in the text, which

cannot be reached by paraphrasing sentences using linguistic knowledge.

For example, Q4 in Table 5.1 and Q2 in Table 5.2 belong to this category.

• Part-whole: We require knowledge that object A is a part of object B. Rela-

tions such as member-of, stuff-of, and component-of between two objects

also fall into this category (Winston et al., 1987; Miller, 1998). For example,

we require implication mentioned above as well as part-whole knowledge

(i.e., “teacher” is a kind of job) to summarize the main topic of the following

dialogue as “profession”: “F: Many of my classmates become teachers after grad-

uation. M: The best thing about being a teacher is feeling happy every day as you

are surrounded by students!”.

• Scenario: We require knowledge about observable behaviors or activities of

humans and their corresponding temporal/locational information. We also

need knowledge about personal information (e.g., profession, education

level, personality, and mental or physical status) of the involved participant

and relations between the involved participants, implicitly indicated by

the behaviors or activities described in texts. For example, we put Q3 in

Table 5.1 in this category as “friendly laughter” may express “understanding”.

Q1 in Table 5.2 about the relation between the two speakers also belongs to
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this category.

• Precondition†: If had event A not happened, event B would not have

happened (Ikuta et al., 2014; O’Gorman et al., 2016). Event A is usually

mentioned in either the question or the correct answer option(s). For

example, “I went to a supermarket” is a necessary precondition for “I was

shopping at a supermarket when my friend visited me”.

• Other: Knowledge that belongs to none of the above subcategories.

Two annotators annotate the type(s) of required knowledge for each question

over 600 instances. To explore the differences and similarities in the required

knowledge types between C3 and existing free-form MRC datasets, following the

same annotation schema, we also annotate instances from the largest Chinese free-

form abstractive MRC dataset DuReader (He et al., 2017) and free-form multiple-

choice English MRC dataset RACE (Lai et al., 2017) and DREAM (Chapter 4) that

can be regarded as the English counterpart of C3
M and C3

D, respectively. We also

divide questions into one of three types – single, multiple, or independent – based

on the minimum number of sentences in the document that explicitly or implicitly

support the correct answer option. We regard a question as independent if it is

context-independent, which usually requires prior vocabulary or domain-specific

knowledge. The Cohen’s kappa coefficient is 0.62.

C3
M vs. C3

D As shown in Table 5.4, compared to the dialogue-based task (C3
D), C3

M

with non-dialogue texts as documents requires more linguistic knowledge (49.0%

vs. 30.7%) yet less general world knowledge (50.7% vs. 64.0%). As many as

24.3% questions in C3
D need scenario knowledge perhaps due to that speakers in

a dialogue (especially face-to-face) may not explicitly mention information that
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they assume others already know such as personal information, the relationship

between the speakers, and temporal and location information. Interestingly, we

observe a similar phenomenon when we compare the English datasets DREAM

(dialogue-based) and RACE. Therefore, it is likely that dialogue-based free-

form tasks can serve as ideal platforms for studying how to improve language

understanding with general world knowledge regardless of language.

C3 vs. its English counterparts We are also interested in whether answering a

specific type of question may require similar types of prior knowledge across

languages. For example, C3
D and its English counterpart DREAM (Chapter 4)

have similar problem formats, document types, and data collection method-

ologies (from Chinese-as-a-second-language and English-as-a-foreign-language

exams, respectively). We notice that the knowledge type distributions of the two

datasets are indeed very similar. Therefore, C3 may facilitate future cross-lingual

MRC studies.

C3 vs. DuReader The 150 annotated instances of DuReader also exhibit proper-

ties similar to those identified in studies of abstractive MRC for English (Nguyen

et al., 2016; Kočiskỳ et al., 2018; Reddy et al., 2019). Namely, turkers asked to

write answers in his/her own words tend instead to write an extractive summary

by copying short textual snippets or whole sentences in the given documents;

this may explain why models designed for extractive MRC tasks achieve reason-

able performance on abstractive tasks. We notice that questions in DuReader

seldom require general world knowledge, which is possibly because users sel-

dom ask questions about facts obvious to most people. On the other hand, as

many as 16.7% of (question, answer) pairs in DuReader cannot be supported

by the given text (vs. 1.3% in C3); in most cases, they require prior knowledge
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about a particular domain (e.g., “On which website can I watch The Glory of Tang

Dynasty?” and “How to start a clothing store?”). In comparison, a larger fraction of

C3 requires linguistic knowledge or general world knowledge.

Method
C3

M C3
D C3

Dev Test Dev Test Dev Test

Random 27.8 27.8 26.4 26.6 27.1 27.2
Distance-Based Sliding Window (Richardson et al., 2013) 47.9 45.8 39.6 40.4 43.8 43.1
Co-Matching (Wang et al., 2018d) 47.0 48.2 55.5 51.4 51.0 49.8
BERT (Devlin et al., 2019) 65.6 64.6 65.9 64.4 65.7 64.5
ERNIE (Sun et al., 2019d) 63.7 63.6 67.3 64.6 65.5 64.1
BERT-wwm (Cui et al., 2019) 66.1 64.0 64.8 65.0 65.5 64.5
BERT-wwm-ext (Cui et al., 2019) 67.9 68.0 67.7 68.9 67.8 68.5

Human Performance∗ 96.0 93.3 98.0 98.7 97.0 96.0

Table 5.5: Performance of baseline in accuracy (%) on the C3 dataset (∗: based on
the annotated subset of test and development sets of C3).

5.2 Approaches

We implement a classical rule-based method and recent state-of-the-art neural

models.

5.2.1 Distance-Based Sliding Window

We implement Distance-based Sliding Window (Richardson et al., 2013), a rule-

based method that chooses the answer option by taking into account (1) lexical

similarity between a statement (i.e., a question and an answer option) and the

given document with a fixed window size and (2) the minimum number of

tokens between occurrences of the question and occurrences of an answer option

in the document. This method assumes that a statement is more likely to be
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correct if there is a shorter distance between tokens within a statement, and more

informative tokens in the statement appear in the document.

5.2.2 Co-Matching

We employ Co-Matching (Wang et al., 2018d), a Bi-LSTM-based model for

multiple-choice MRC tasks for English. It explicitly treats a question and one of

its associated answer options as two sequences and jointly models whether or

not the given document matches them. We modify the pre-processing step and

adapt this model to MRC tasks for Chinese (Section 5.3.1).

5.2.3 Fine-Tuning Pre-Trained Language Models

We also apply the framework of fine-tuning a pre-trained language model on ma-

chine reading comprehension tasks (Radford et al., 2018). We consider the follow-

ing four pre-trained language models for Chinese: Chinese BERT-Base (denoted

as BERT) (Devlin et al., 2019), Chinese ERNIE-Base (denoted as ERNIE) (Sun

et al., 2019d), and Chinese BERT-Base with whole word masking during pre-

training (denoted as BERT-wwm) (Cui et al., 2019) and its enhanced version

pre-trained over larger corpora (denoted as BERT-wwm-ext). These models have

the same number of layers, hidden units, and attention heads.

Given document d, question q, and answer option oi, we construct the input

sequence by concatenating [CLS], tokens in d, [SEP], tokens in q, [SEP], tokens

in oi, and [SEP], where [CLS] and [SEP] are the classifier token and sentence

separator in a pre-trained language model, respectively. We add an embedding
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vector t1 to each token before the first [SEP] (inclusive) and an embedding

vector t2 to every other token, where t1 and t2 are learned during language model

pre-training for discriminating sequences. We denote the final hidden state for

the first token in the input sequence as S i ∈ R1×H, where H is the hidden size.

We introduce a classification layer W ∈ R1×H and obtain the unnormalized log

probability Pi ∈ R of oi being correct by Pi = S iWT . We obtain the final prediction

for q by applying a softmax layer over the unnormalized log probabilities of all

options associated with q.

5.3 Experiment

Co-Matching BERT BERT-wwm-ext Human
C3

M— C3
D C3

M— C3
D C3

M— C3
D C3

M— C3
D

Matching 54.6 — 70.4 81.8 — 81.5 100.0 — 85.2 100.0 — 100.0
Prior knowledge 47.5 — 51.2 64.0 — 64.2 62.6 — 68.3 95.7 — 97.6
� Linguistic 49.4 — 49.0 67.1 — 62.8 61.2 — 68.6 97.7 — 100.0
� Domain-specific∗ – — 66.7 – — 0.0 – — 0.0 – — 100.0
� General world 46.5 — 53.8 57.7 — 66.3 64.8 — 70.0 93.0 — 96.3

Arithmetic∗ 50.0 — 60.0 0.0 — 80.0 50.0 — 60.0 100.0 — 100.0
Connotation∗ 0.0 — 50.0 0.0 — 62.5 0.0 — 62.5 100.0 — 100.0
Cause-effect 47.6 — 55.6 57.1 — 55.6 66.7 — 66.7 95.2 — 100.0
Implication 46.7 — 45.5 70.0 — 50.0 70.0 — 54.6 86.7 — 95.5
Part-whole 60.0 — 50.0 40.0 — 50.0 40.0 — 50.0 100.0 — 83.3
Precondition∗ 66.7 — 50.0 66.7 — 25.0 66.7 — 75.0 100.0 — 100.0
Scenario 40.0 — 61.3 40.0 — 80.7 60.0 — 83.9 100.0 — 96.8
Other∗ – — 0.0 – — 0.0 – — 0.0 – — 100.0

Single sentence 50.0 — 64.7 72.4 — 76.5 71.1 — 82.4 97.4 — 97.1
Multiple sentences 47.2 — 51.7 58.3 — 64.7 61.1 — 68.1 94.4 — 98.3
Independent∗ 0.0 — – 50.0 — – 0.0 — – 100.0 — –

Table 5.6: Performance comparison in accuracy (%) by categories based on a
subset of development sets of C3 (∗: ≤ 10 annotated instances fall into that
category).
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Figure 5.1: Analysis of distractor plausibility.

5.3.1 Experimental Settings

We use C3
M and C3

D together to train a neural model and perform testing on them

separately, following the default setting on RACE that also contains two sub-

sets (Lai et al., 2017). We run every experiment five times with different random

seeds and report the best development set performance and its corresponding

test set performance.

Distance-Based Sliding Window. We simply treat each character as a token.

We do not employ Chinese word segmentation as it results in drops in perfor-

mance based on our experiment.

Co-Matching. We replace the English tokenizer with a Chinese word segmenter

in HanLP.1 We use the 300-dimensional Chinese word embeddings released by Li

et al. (2018b).
1https://github.com/hankcs/HanLP.
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Fine-Tuning Pre-Trained Language Models. We set the learning rate, batch

size, and maximal sequence length to 2 × 10−5, 24, and 512, respectively. We

truncate the longest sequence among d, q, and oi (Section 5.2.3) when an input

sequence exceeds the length limit 512. For all experiments, we fine-tune a model

on C3 for eight epochs. We keep the default values for the other hyperparame-

ters (Devlin et al., 2019).

5.3.2 Baseline Results

As shown in Table 5.5, methods based on pre-trained language models (BERT,

ERNIE, BERT-wwm, and BERT-wwm-ext) outperform the Distance-based Sliding

Window approach and Bi-LSTM-based Co-Matching by a large margin. BERT-

wwm-ext performs better on C3 compared to other three pre-trained language

models, though there still exists a large gap (27.5%) between this method and

human performance (96.0%).

We also report the performance of Co-Matching, BERT, BERT-wwm-ext, and

human on different question categories based on the annotated development sets

(Table 5.6), which consist of 150 questions in C3
M and 150 questions in C3

D. These

models generally perform worse on questions that require prior knowledge or

reasoning over multiple sentences than questions that can be answered by surface

matching or only need the information from a single sentence (Section 5.1.3).
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Figure 5.2: The need for two major types of prior knowledge when answering
questions of different maxi S(wi, d) and S(c, d).

5.3.3 Discussions on Distractor Plausibility

We look into incorrect predictions of Co-Matching, BERT, and BERT-wwm-ext

on the development set. We observe that the existence of plausible distractors

may play a critical role in raising the difficulty level of questions for models. We

regard a distractor (i.e., wrong answer option) as plausible if it, compared with

the correct answer option, is more superficially similar to the given document.

Two typical cases include (1) the information in the distractor is accurate based

on the document but does not (fully) answer the question, and (2) the distractor

distorts, oversimplifies, exaggerates, or misinterprets the information in the

document.

Given document d, the correct answer option c, and wrong answer options

{w1,w2, . . . ,wi, . . . ,wn} associated with a certain question, we measure the distrac-

tor plausibility of distractor wi by:

γi = S(wi, d) − S(c, d) (5.1)
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where S(x, y) is a normalized similarity score between 0 and 1 that measures the

edit distance to change x into a substring of y using single-character edits (inser-

tions, deletions or substitutions). Particularly, if x is a substring of y, S(x, y) = 1;

if x shares no character with y, S(x, y) = 0. By definition, S(wi, d) in Equation (5.1)

measures the lexical similarity between distractor wi and d; S(c, d) measures the

similarity between the correct answer option c and d.

To quantitatively investigate the impact of the existence of plausible distrac-

tors on model performance, we group questions from the development set of C3

by the largest distractor plausibility (i.e., maxi γi), in range of [−1, 1], for each ques-

tion and compare the performance of Co-Matching, BERT, and BERT-wwm-ext

in different groups. As shown in Figure 5.1(a), the largest distractor plausibility

may serve as an indicator of the difficulty level of questions presented to the

investigated models. When the largest distractor plausibility is smaller than −0.8,

all three models exhibit strong performance (≥ 90%). As the largest distractor

plausibility increases, the performance of all models consistently drops. All mod-

els perform worse than average on questions having at least one high-plausible

distractor (e.g., distractor plausibility > 0). Compared with BERT, the gain of

the best-performing model (i.e., BERT-wwm-ext) mainly comes from its superior

performance on these “difficult” questions.

Further, we find that distractor plausibility is strongly correlated with the

need for prior knowledge when answering questions in C3 based on the an-

notated instances, as shown in Figure 5.1(b). For further analysis, we group

annotated instances by different maxi S(wi, d) and S(c, d) (in Equation (5.1)) and

separately compare their need for linguistic knowledge and general world knowl-

edge. As shown in Figure 5.2, general world knowledge is crucial for question
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answering when the correct answer option is not mentioned explicitly in the

document (i.e., S(c, d) is relatively small). In contrast, we tend to require lin-

guistic knowledge when both the correct answer option and the most confusing

distractor (i.e., the one with the largest distractor plausibility) are very similar to

the given document.

103 103.5 104 104.5 105
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60

70

80
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100
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)

C 3

C 3 +
{
RACE,DREAM

}
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Figure 5.3: Performance of BERT-wwm-ext trained on 1/8, 2/8, . . . , 8/8 of C3

training data, and C3 training data plus 1/8, 2/8, . . . , 8/8 of machine translated
(MT) RACE and DREAM training data.

5.3.4 Discussions on Data Augmentation

To extrapolate to what extent we can improve the performance of current models

with more training data, we plot the development set performance of BERT-

wwm-ext trained on different portions of the training data of C3. As shown in

Figure 5.3, the accuracy grows roughly linearly with the logarithm of the size of

training data, and we observe a substantial gap between human performance

and the expected BERT-wwm-ext performance, even assuming that 105 training

instances are available, leaving much room for improvement.
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Furthermore, as the knowledge type distributions of C3 and its English coun-

terparts RACE and DREAM are highly similar (Section 5.1.3), we translate RACE

and DREAM from English to Chinese by Google Translate and plot the perfor-

mance of BERT-wwm-ext trained on C3 plus different numbers of translated

instances. The learning curve is also roughly linear with the logarithm of the

number of training instances from translated RACE and DREAM, but with a

lower growth rate. Even augmenting the training data with all 94k translated

instances only leads to a 4.6% improvement (from 67.8% to 72.4%) in accuracy

on the development set of C3. From another perspective, BERT-wwm-ext trained

on all translated instances without using any data in C3 only achieves an accu-

racy of 67.1% on the development set of C3, slightly worse than 67.8% achieved

when only the training data in C3 is used, whose size is roughly 1/8 of that of

the translated instances. These observations suggest a need to better leverage

large-scale English resources from similar MRC tasks.

Besides augmenting the training data with translated instances, we also

attempt to fine-tune a pre-trained multilingual BERT-Base released by Devlin

et al. (2019) on the training data of C3 and all original training instances in English

from RACE and DREAM. However, the accuracy on the development set of

C3 is 63.4%, which is even lower than the performance (65.7% in Table 5.5) of

fine-tuning Chinese BERT-Base only on C3.

5.4 Related Work

We will first discuss standard MRC datasets for English, followed by MRC/QA

datasets for Chinese.
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English. Much of the early MRC work focuses on designing questions whose

answers are spans from the given documents (Hermann et al., 2015; Hill et al.,

2016; Bajgar et al., 2016; Rajpurkar et al., 2016; Trischler et al., 2017; Joshi et al.,

2017). As a question and its answer are usually in the same sentence, state-of-

the-art methods (Devlin et al., 2019) have outperformed human performance on

many such tasks. To increase task difficulty, researchers have explored a number

of options including adding unanswerable (Trischler et al., 2017; Rajpurkar

et al., 2018) or conversational (Choi et al., 2018; Reddy et al., 2019) questions

that might require reasoning (Zhang et al., 2018a), and designing abstractive

answers (Nguyen et al., 2016; Kočiskỳ et al., 2018; Dalvi et al., 2018) or (question,

answer) pairs that involve cross-sentence or cross-document content (Welbl et al.,

2018; Yang et al., 2018). In general, most questions concern the facts that are

explicitly expressed in the text, making these tasks possible to measure the level

of fundamental reading skills of machine readers.

Another research line has studied MRC tasks, usually in a free-form multiple-

choice form, containing a significant percentage of questions that focus on the

understanding of the implicitly expressed facts, events, opinions, or emotions in

the given text (Richardson et al., 2013; Mostafazadeh et al., 2016; Khashabi et al.,

2018; Lai et al., 2017; Sun et al., 2019a). Therefore, these benchmarks may allow

a relatively comprehensive evaluation of different reading skills and require a

machine reader to integrate prior knowledge with information presented in a

text. In particular, real-world language exams are ideal sources for constructing

this kind of MRC datasets as they are designed with a similar goal of measuring

different reading comprehension abilities of human language learners primarily

based on a given text. Representative datasets in this category include RACE (Lai

et al., 2017) and DREAM (Sun et al., 2019a), both collected from English-as-a-
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foreign-language exams designed for Chinese learners of English. C3
M and C3

D

can be regarded as a Chinese counterpart of RACE and DREAM, respectively,

and we will discuss their similarities in detail in Section 5.1.3.

Chinese. Extractive MRC datasets for Chinese (Cui et al., 2016; Li et al., 2016;

Cui et al., 2018b,a; Shao et al., 2018) have also been constructed — using web doc-

uments, news reports, books, and Wikipedia articles as source documents — and

for which all answers are spans or sentences from the given documents. Zheng

et al. (2019) propose a cloze-style multiple-choice MRC dataset by replacing

idioms in a document with blank symbols, and the task is to predict the cor-

rect idiom from candidate idioms that are similar in meanings. The abstractive

dataset DuReader (He et al., 2017) contains questions collected from query logs,

free-form answers, and a small set of relevant texts retrieved from web pages

per question. In contrast, C3 is the first free-form multiple-choice Chinese MRC

dataset that contains different types of questions and requires rich prior knowl-

edge especially general world knowledge for a better understanding of the given

text. Furthermore, 48.4% of problems require dialogue understanding, which

has not been studied yet in existing Chinese MRC tasks.

Similarly, questions in many existing multiple-choice QA datasets for Chi-

nese (Cheng et al., 2016; Guo et al., 2017a,b; Zhang and Zhao, 2018; Zhang et al.,

2018b; Hao et al., 2019; Huang et al., 2019b) are also free-form and collected from

exams. However, most of the pre-existing QA tasks for Chinese are designed to

test the acquisition and exploitation of domain-specific (e.g., history, medical,

and geography) knowledge rather than general reading comprehension, and the

performance of QA systems is partially dependent on the performance of infor-

mation retrieval or the relevance of external resource (e.g., corpora or knowledge
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bases). We compare C3 with relevant MRC/QA datasets for Chinese and English

in Table 5.7.

5.5 Chapter Summary

We present the first free-form multiple-choice Chinese machine reading com-

prehension dataset (C3), collected from real-world language exams, requiring

linguistic, domain-specific, or general world knowledge to answer questions

based on the given written or orally oriented texts. We study the prior knowl-

edge needed in this challenging machine reading comprehension dataset and

carefully investigate the impacts of distractor plausibility and data augmentation

(based on similar resources for English) on the performance of state-of-the-art

neural models. Experimental results demonstrate that there is still a significant

performance gap between the best-performing model (68.5%) and human read-

ers (96.0%) and a need for better ways for exploiting rich resources in other

languages.
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CHAPTER 6

IMPROVING READING COMPREHENSION WITH CONTEXTUALIZED

KNOWLEDGE

A number of social cognitive studies have shown that the integration of informa-

tion across communicative modalities can facilitate the language comprehension

of human readers (Jones and LeBaron, 2002; Calero, 2005; Brinke and Weis-

buch, 2020). In this chapter, we focus on integrating verbal (e.g., utterances

of speakers) and nonverbal information (e.g., body movements, facial expres-

sions, vocal tones, or mental states of speakers) originally conveyed in different

modalities within a short time period and exploring the influence of verbal-

nonverbal knowledge on machine reading comprehension tasks, especially those

non-extractive MRC tasks studied in the previous chapters that contain a high

proportion of questions requiring general world knowledge unstated in the given

documents (Mostafazadeh et al., 2016; Lai et al., 2017; Ostermann et al., 2018; Sun

et al., 2019a; Huang et al., 2019a; Sun et al., 2020b).

Typically, each piece of structured knowledge is represented as a triple that

contains two phrases (e.g., (“finding a lost item”, “happiness”) and the relation (e.g.,

CAUSES) between phrases, which can be one of a pre-defined set of relations (Tan-

don et al., 2014; Speer et al., 2017; Grishman, 2019). A carefully designed relation

set is indispensable for many fundamental tasks such as knowledge graph con-

struction. However, it is still unclear whether we need to explicitly represent

relations if the final goal is to help downstream tasks that do not directly depend

on the reliability of relations in triples from external sources. Once we decide not

to name relations, one natural question is whether we could implicitly represent

relations between two phrases. We suggest that adding context in which the
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phrases occur may be helpful as such a context constrains the possible relations

between phrases without intervening in the relations explicitly (Brézillon et al.,

1998). Hereafter, we call a triple that contains a phrase pair and its associated

context as a piece of contextualized knowledge.

To represent verbal-nonverbal knowledge, we regard related verbal and

nonverbal information as the phrase pair; we treat the text in which the verbal-

nonverbal pair occurs as the context. We suggest film and television show scripts

are good source corpora for extracting contextualized verbal-nonverbal knowl-

edge as they contain rich strongly interrelated verbal and nonverbal information,

which can be easily separated from the scripts. For example, as shown in Ta-

ble 6.1, the pause in “I’m going......to his house.” is related to “thinking”, the internal

state of the speaker. Furthermore, a script usually contains multiple scenes, and

the entire text of the scene from which the verbal-nonverbal pair is extracted can

serve as the context. According to the relative position of a verbal-nonverbal

pair in a scene, we use lexical patterns to extract four types of contextualized

knowledge (Section 6.1).

To make the form of knowledge suitable for MRC tasks, we randomly select

nonverbal messages from the same script to convert each piece of knowledge

into a weakly-labeled MRC instance (Section 6.2). We propose a two-stage fine-

tuning strategy to use the weakly-labeled MRC data: first, we train a model

on the combination of the weakly-labeled data and the target MRC data that is

human-annotated but relatively small-scale, and then, we fine-tune the resulting

model on the target data alone (Section 6.3). We observe that training over the

combination of all the data based on all types of contextualized knowledge

does not lead to noticeable gains compared to using one type of knowledge.
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Therefore, we further adopt a teacher-student paradigm with multiple teacher

models trained with different types of knowledge (Section 6.4).

As a starting point, we focus on scripts written in Chinese. Hence, we evaluate

our method on C3 presented in the previous chapter, as far as we know, the only

multiple-choice MRC dataset for Chinese wherein most questions require general

world knowledge beyond the given contents. Experimental results demonstrate

that our method leads to +4.3% in accuracy over a state-of-the-art baseline (Cui

et al., 2020). We also seek to transfer the knowledge to help other tasks by

adapting the resulting student MRC model, yielding gains in both noisy and

clean settings: up to +7.8% in accuracy on MRC datasets DREAM (Chapter 4)

and Cosmos QA (Huang et al., 2019a), which are automatically translated from

English into Chinese, and +2.9% in F1 on the Chinese set of a bilingual document-

level relation extraction dataset DialogRE (Yu et al., 2020) over strong baselines.

These results indicate the usefulness of the extracted knowledge.

This chapter is based on Sun et al. (2020a).

6.1 Contextualized Knowledge Extraction

We regard that understanding the interactions between verbal and nonverbal

messages may require general world knowledge as they function together in

communications, and such knowledge is assumed to be known by most people

without being taught. We propose to use interrelated verbal and nonverbal

information as phrases in the classical triple-style knowledge representation

and situate them in a context. Formally, we call a triple (v, c, n) as a piece of

contextualized knowledge, containing a pair of related verbal information v

83



Scene 1

� Interior. Runaway office. Day.
Andy: I tried to ask her, but...
Emily: You never ask Miranda. Anything. (sighs) All right, I’ll take care of the other stuff. You go to

Calvin Klein.
Andy: Me?
Emily: I’m sorry. Do you have a prior commitment? Is there some hideous pants convention?
Andy: So I just, what, go down to the Calvin Klein store and ask them...
♦ Emily rolls her eyes so hard they almost eject from her head.
Emily: You’re not going to the store.
Andy: Of course not. I’m going...(thinking)...to his house.
Emily (oh god): You are catching on quickly. We always send assistants to a designer’s home on their very first

day. You’re going to his showroom. I’ll give you the address.
Andy: Sorry. Got it. What’s the nearest subway stop?
Emily: Good God. You do not. Under any circumstances. Take public transportation.
Andy: I don’t?

type nonverbal verbal

Bc oh god Emily: You are catching on [. . .] I’ll give
you the address.

I sighs Emily: You never ask Miranda. Anything.
All right [. . .] Klein.

I thinking Andy: Of course not. I’m going......to his house.
O Emily rolls her eyes so hard Andy: So I just, what, go down to the

they almost eject from her head. Calvin Klein store and ask them...

Table 6.1: A sample scene in a script and examples of extracted verbal-nonverbal
pairs from this scene (all translated into English; [. . .]: words omitted; �: scene
heading; ♦: action line). The scene is regarded as the context of all the verbal-
nonverbal pairs.

and nonverbal information n, and the associated context c. We choose to extract

contextualized knowledge from film and television show scripts1 as plentiful

verbal and nonverbal messages frequently co-occur in scripts, and they can be

easily separated. Scenes in a script are separated by blank lines. According to

the relative position of verbal and nonverbal information, we extract four types

of contextualized knowledge (Bc, Bn, I, and O):

• Beginning: the nonverbal information n appears after a speaker name

and before the speaker’s utterance. We regard the speaker name and the

1As it is difficult to verify whether a text is written before a presentation (i.e., script) or
during/after a presentation (i.e., transcript), we use scripts throughout this chapter.
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corresponding utterance as v.

◦ Clean (Bc): We only extract nonverbal information n within parenthe-

ses.

◦ Noisy (Bn): The first span of a turn, followed by a colon, can also

contain both a speaker name and nonverbal information about this

speaker (e.g., “Xiaocong Le took the cup of hot water: ‘Thank you!’ ”). We

remove the phrase that is a potential speaker name from the span and

regard the remaining text in the span as n. We roughly regard a phrase

as a speaker name if it appears in the first span of other turns in the

same scene.

• Inside (I): We only extract nonverbal information n enclosed in parentheses,

which appears within an utterance. All the information in the same turn

except n is treated as v.

• Outside (O): Here n is an action line that mainly describes what can be seen

or heard by the audience, marked by ♦ in Table 6.1. We regard the turn (if

it exists) before the action line as its corresponding v.

We do not extract phrases in parentheses or action lines as nonverbal informa-

tion if they are terminologies for script writing such as “O.S.”, “V.O.” “CONT’D”,

“beat”, “jump cut”, and “fade in”. All types of contextualized knowledge extracted

from a scene share the same context c, i.e., the scene itself. We do not exploit

the scene heading mostly about when and where a scene takes place (marked

by � in Table 6.1), as it is intentionally designed to cover the content of the

whole scene, which is already used as context. See more extracted contextualized

verbal-nonverbal knowledge triples in Table 6.2 and Table 6.3.
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6.2 Instance Generation

As most current MRC tasks requiring general world knowledge are usually in a

multiple-choice form, we mainly discuss how to convert the extracted triples into

multiple-choice instances and leave its extension to other types (e.g., extractive

or abstractive) of MRC tasks for future research. We generate instances for each

type of contextualized knowledge. For each triple (v, c, n), we remove n from

context c, and we regard the remaining content as the reference document, verbal

information v as the question, and the nonverbal information n as the correct

answer option. To generate distractors (i.e., wrong answer options), we randomly

select N items from all the unique nonverbal information in other triples, which

belong to the same type of contextualized knowledge and are extracted from the

same script as (v, c, n). Note that we only generate one instance based on each

triple, while it is easy to generate more instances by changing distractors.

supervised 
fine-tuning

weakly-supervised 
fine-tuning

MRC
model

weakly-labeled
data

labeled
data

knowledge
extraction

MRC
model

labeled
data

distractor
generation

unstructured
corpus

Figure 6.1: Two-stage fine-tuning framework overview (one type of contextual-
ized knowledge is involved).
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6.3 Two-Stage Fine-Tuning

As mentioned previously, we aim to use the constructed weakly-labeled data to

improve a downstream MRC task. Given weakly-labeled data generated based

on one type of contextualized knowledge (e.g., Bc or I) extracted from scripts,

we first use the weakly-labeled data in conjunction with the training set of the

target MRC data as the training data to train the model and then fine-tune the

resulting model on the target MRC data as illustrated in Figure 6.1. We do not

adjust the ratio of clean data to weakly-labeled data observed during training as

previous joint training work on other tasks such as machine translation (Edunov

et al., 2018).

Another way is to perform separate training: we first train the model on the

weakly-labeled data and then fine-tune it on the target data. In our preliminary

experiment, we observe that joint training leads to better performance, and hence

we apply it in all the experiments. See performance comparisons of joint and

separate training in Section 6.5.4.

unstructured
corpus

knowledge
extraction

weakly-labeled
data 1

labeled
data

labeled
data

teacher
model 1

teacher
model 2

weakly-labeled
data 1'

labeled
data'

weakly-labeled
data 2'

teacher
model 1

teacher
model 2

student
model

student
model

labeled
data'

teacher
model 1

teacher
model 2

weakly-labeled
data 2

distractor
generation

distractor
generation

1 2

Figure 6.2: Teacher-student paradigm overview (multiple types of contextualized
knowledge are involved). To save space, we only show the case that involves
two types of contextualized knowledge.
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6.4 Teacher-Student Paradigm

As introduced in Section 6.2, we have multiple sets of weakly-labeled data, each

corresponding to one type of contextualized knowledge (Section 6.1). We observe

that simply combining all the data, either in joint training or separate training,

does not lead to noticeable gains compared to using one type of contextualized

knowledge. Inspired by the previous work (You et al., 2019) that trains a student

automatic speech recognition model with multiple teacher models, and each

teacher model is trained on a domain-specific subset with a unique speaking style,

we employ a teacher-student paradigm to inject multiple types of contextualized

knowledge into a single student machine reader.

Let V denote a set of labeled instances, W1, . . . ,W` denote ` sets of weakly-

labeled instances, and W =
⋃

1≤i≤` Wi. For each instance t, we let mt denote its total

number of answer options, and h(t) be a hard label vector (one-hot) such that

h(t)
j = 1 if the j-th option is labeled as correct. We train ` teacher models, denoted

by T1, . . . ,T`, and optimize Ti by minimizing
∑

t∈V∪Wi
L1(t, θTi). L1 is defined as

L1(t, θ) = −
∑

1≤k≤mt

h(t)
k log pθ(k | t),

where pθ(k | t) denotes the probability that the k-th option of instance t is correct,

estimated by the model with parameters θ.

We define soft label vector s(t) such that

s(t)
k =


λ h(t)

k + (1 − λ)
∑

1≤ j≤`

1
`

pθT j
(k | t) t ∈ V

λ h(t)
k + (1 − λ)pθTi

(k | t) t ∈ Wi

,

where λ ∈ [0, 1] is a weight parameter, and k = 1, . . . ,mt.

We then train a student model, denoted by S, still in a two-stage fashion. In
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stage one (i.e., weakly-supervised fine-tuning), we optimize S by minimizing∑
t∈V∪W L2(t, θS), where L2 is defined as

L2(t, θ) = −
∑

1≤k≤mt

s(t)
k log pθ(k | t).

In stage two (i.e., supervised fine-tuning), we further fine-tune the resulting S

after stage one by minimizing
∑

t∈V L2(t, θS). See Figure 6.2 for an overview of the

paradigm.

6.5 Experiment

6.5.1 Data

We collect 8,166 scripts in Chinese, and most of them are intended for films and

television shows.2 After segmentation and filtering, we obtain 199,280 scenes,

each of which contains at least one piece of contextualized knowledge defined

in Section 6.1. We generate four sets of weakly-labeled MRC data based on

four types of contextualized knowledge. For comparison, we also use existing

human-annotated triples about general world knowledge in the Chinese version

of ConceptNet (Speer et al., 2017). We set the number of distractors N (Section 6.2)

to five for weakly-labeled MRC instances.

For evaluation, we use C3, so far as we know, the only multiple-choice MRC

data for Chinese with a focus on general world knowledge. About 86.8% of

questions in C3 involve prior knowledge (i.e., linguistic, domain-specific, and

general world knowledge) unstated in the given texts, and all instances are

2https://www.1bianju.com.
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carefully designed by experts such as second-language teachers. Each instance

consists of a document, a question, and multiple answer options; only one option

is correct. Furthermore, we use Google Translate to generate Chinese versions

of DREAM and Cosmos QA, two popular multiple-choice MRC datasets for

English in which most questions require general world knowledge, as additional

indications to evaluate the usefulness of the extracted knowledge. Besides MRC

tasks, we use the Chinese set of a bilingual relation extraction dataset DialogRE,

which also requires document-level understanding to predict relations from 36

possible types between an argument pair. See Table 6.4 for data statistics. While

we focus mostly on resources in Chinese, our extraction and training methods

are not limited to a particular language.

data type of construction # of instances

C3 human-annotated 19,577
DREAM human-annotated 10,197
Cosmos QA human-annotated 35,600
DialogRE human-annotated 10,886

ConceptNet human-annotated 737,534

Bc weakly-labeled 105,622
Bn weakly-labeled 198,053
I weakly-labeled 204,750
O weakly-labeled 192,391
Bc+ Bn+ I + O weakly-labeled 700,816

Table 6.4: Data Statistics.

6.5.2 Implementation Details

We follow Sun et al. (2020b) for the model architecture consisting of a pre-

trained language model and a classification layer on top of the model. We

use RoBERTa-wwm-ext-large (Cui et al., 2020) as the pre-trained language model,

which achieves state-of-the-art performance on C3 and many other natural lan-
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index weakly-supervised fine-tuning supervised fine-tuning dev test
data teacher-student data teacher-student

0 – – C3 – 73.9 73.4

1 C3+ Bc – – – 71.1 71.7
2 C3+ Bc – C3 – 74.5 74.0
3 C3+ Bn – – – 71.3 72.0
4 C3+ Bn – C3 – 74.6 74.5
5 C3+ I – – – 73.5 72.8
6 C3+ I – C3 – 75.6 74.9
7 C3+ O – – – 72.4 72.7
8 C3+ O – C3 – 75.4 74.9

9 C3+ Bc+ Bn+ I + O – – – 71.6 71.0
10 C3+ Bc+ Bn+ I + O – C3 – 75.6 75.2
11 C3+ Bc+ Bn+ I + O X C3 – 76.5 76.4
12 C3+ Bc+ Bn+ I + O X C3 X 77.4 77.7

Table 6.5: Average accuracy (%) on the development and test sets of the C3

dataset.

guage understanding tasks in Chinese (Xu et al., 2020). We leave the exploration

of more pre-trained language models for future work. When the input sequence

length exceeds the limit, we repeatedly discard the last turn in the context, or

the first turn if the last turn includes the extracted verbal information. We train a

model for one epoch during the weakly-supervised fine-tuning stage and eight

epochs during the supervised fine-tuning stage. We set λ (defined in Section 6.4)

to 0.5 in all experiments based on the rationale that we can make best use of the

soft labels while at the same time making sure arg maxk s(t)
k is always the index of

the correct option for instance t. Carefully tuning λ on the development set may

lead to further improvements, which is not the primary focus of this chapter.
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6.5.3 Main Results and Discussions

Table 6.5 reports the main results. The baseline accuracy (73.4% {0}) is slightly

lower than previously reported using the same language model3 as we report

the average accuracy over five runs with different random seeds for all our

supervised fine-tuning results. For easy reference, we indicate the index for each

result in curly brackets in the following discussion. Obviously, the performance

of a model after the first fine-tuning stage over the combination of the C3 dataset

and much larger weakly-labeled data is worse (e.g., 71.7% {1}) than baseline

performance ({0}). Further fine-tuning the resulting model on the C3 dataset

consistently leads to improvements (e.g., 74.0% {2} and 74.5% {4}) over the base-

line {0}, demonstrating the effectiveness of the two-stage fine-tuning strategy

for using large-scale weakly-labeled data. We will discuss the critical role of the

target task’s data (i.e., C3) in the weakly-supervised fine-tuning stage in the next

subsection. Following this strategy, each of the weakly-labeled data based on

one type of contextualized knowledge can boost the final performance ({2, 4, 6,

8}); the magnitude of accuracy improvement is 1.2% on average.

When we combine all the weakly-labeled data in the first fine-tuning stage,

the performance gain after the second round of fine-tuning (75.2% {10}) is not

as impressive as expected, given the best performance achieved by only using

one set (74.9% {6}). As a comparison, our teacher-student paradigm that trains

multiple teacher models with different types of weakly-labeled data leads to

up to 3.7% improvement in accuracy ({12} vs. {2, 4, 6, 8}). The advantage is

reduced but still exists even when we use the original hard labels instead of soft

labels in the second fine-tuning stage (76.4% {11}).
3https://github.com/CLUEbenchmark/CLUE.
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6.5.4 Ablation Studies and Analysis

We have shown that the present teacher-student paradigm helps inject multiple

types of knowledge into a reader. We conduct two ablation studies to examine

critical factors. We remove the context (i.e., scene) from each instance in the

weakly-labeled data and leave it empty. All other aspects of this baseline remain

the same as {12} in Table 6.5. We also experiment with removing C3 from the

weakly-supervised fine-tuning stage when we train teacher and student models

(Figure 6.2) for comparisons. We observe that accuracy decreases in both cases

(Table 6.6), demonstrating the usefulness of contexts in contextualized knowledge

for improving MRC and the importance of involving the human-annotated data

of the target task, although small-scale, in the weakly-supervised fine-tuning

stage.

method dev test

{12} in Table 6.5 77.4 77.7
{12} w/o context in weakly-labeled data 76.8 76.6
{12} w/o using C3 in the 1st FT 76.6 76.2

Table 6.6: Ablation results on the development and test sets of the C3 dataset (FT:
fine-tuning).

It is difficult, however, to infer which pieces of knowledge help the improved

MRC instances. As an alternative solution, we study the impacts of the con-

textualized knowledge on different types of questions based on the annotated

subset (300 instances) released along with the dataset. As shown in Table 6.7,

our method generally improves performance on all types of questions, espe-

cially those that require general world knowledge. In particular, we observe

accuracy improvements of 10.0% or more on questions that require cause-effect,

part-whole, or scenario, three subcategories of general world knowledge. For

instance, given a conversation, “Female: Sir, can you drive faster? I’m afraid that I
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will be late for the exam. Male: No, the speed is already quite fast. Safety is also very

important.”, we require scenario knowledge about activities of humans, their

corresponding location information, and personal information such as the pro-

fession, in order to answer the question about the possible location (“taxi”) of the

two speakers.

category {0} {12} ∆

Matching 90.0 94.7 4.7
Prior Knowledge 69.5 75.3 5.8
· · · Linguistic 73.8 77.8 4.0
· · · General world knowledge 68.0 74.4 6.4
· · · Arithmetic 34.3 40.0 5.7
· · · Connotation 74.0 78.0 4.0
· · · Cause-effect 78.0 88.0 10.0
· · · Implication 68.5 70.8 2.3
· · · Part-whole 58.2 70.9 12.7
· · · Precondition 60.0 65.7 5.7
· · · Scenario 64.8 76.5 11.7

· · · Domain-specific? 13.3 20.0 6.7

Table 6.7: Average accuracy (%) on the annotated development set of C3 per
category (?: only three instances).

notes weakly-labeled data dev test
structured knowledge document question answer

{0} in Table 6.5 – – – – 73.9 73.4

{10} in Table 6.5 contextualized knowledge scene verbal nonverbal 75.6 75.2
{10} w/o context contextualized knowledge empty verbal nonverbal 74.9 74.2
i ConceptNet empty subject object 74.0 72.7
ii ConceptNet relation type subject object 74.6 74.1

Table 6.8: Average accuracy (%) on the development and test sets of the
C3 dataset using weakly-labeled data constructed based on contextualized knowl-
edge or ConceptNet.
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6.5.5 A Comparison Between Contextualized Knowledge and

ConceptNet

From the perspective of improving a downstream MRC task, we compare the

extracted contextualized knowledge with standard general world knowledge

graphs, which have been shown to improve MRC tasks (Wang et al., 2018c). As

most of such graphs are in English, we only compare contextualized knowledge

with the human-annotated Chinese version of ConceptNet. Each triple in Con-

ceptNet is represented as (subject, relation type, object) (e.g., (“wing”, PART OF,

“an airplane”)). We experiment with two types of input sequences when we con-

vert triples into MRC instances: (i) leave the document empty in each instance

and (ii) use the relation type as the document. We randomly select phrases in

ConceptNet other than the phrases in each triple as distractors.

For a fair comparison, we compare (ii) with baseline {10} in Table 6.5 as it fol-

lows the same two-stage fine-tuning without using the teacher-student paradigm.

To compare with (i), we run an ablation test of {10} by removing contexts from

weakly-labeled MRC instances. The amounts of weakly-labeled instances based

on contextualized knowledge and ConceptNet are similar (Table 6.4). The results

in Table 6.8 reveal that under the two-stage fine-tuning framework, introducing

ConceptNet yields up to 0.7% in accuracy, but using contextualized knowledge

gives a bigger gain of 1.8% in accuracy. Moreover, removing contexts from

weakly-labeled instances hurts performance, consistent with our observation in

Section 6.5.4.

We admit that our knowledge representation is not concise enough for easy

alignment with existing graphs. Nevertheless, we argue that contexts can tacitly
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state relations between phrases and emphasize the usefulness of contextualized

knowledge for MRC tasks requiring general world knowledge.

6.5.6 The Usefulness of Contextualized Knowledge for Other

Tasks

We report the average accuracy over five runs with different random seeds for

all results. For MRC datasets DREAM and Cosmos QA, which are in translated

Chinese, we simply use {12} in Table 6.5 to initialize an MRC model. As shown

in Table 6.9, in this noisy setting, we still obtain 7.8% in accuracy on the test

set of DREAM and 2.7% in accuracy on the publicly available development set

of Cosmos QA, by adapting our best-performing MRC model. The different

performance levels on translated datasets and their original English versions

may be due to the different sizes of text corpora for pre-training language models

for English and Chinese and noise introduced by imperfect automatic machine

translation.

parameter initialization
DREAM Cosmos QA

dev test dev

RoBERTa-wwm-ext-large 61.4 60.8 56.7
{0} in Table 6.5 67.0 65.5 57.1
{12} in Table 6.5 69.2 68.6 59.4

Table 6.9: Average accuracy on the translated Chinese version of DREAM and
Cosmos QA.

For DialogRE, instead of converting the extracted triples into weakly-labeled

relation extraction instances and training from scratch, we simply replace the

classification layer of an MRC model with a multi-class multi-label classification

layer following the baseline released by Yu et al. (2020) and fine-tune the whole
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parameter initialization
dev test

F1 F1c F1 F1c

BERTS (Yu et al., 2020) 65.5 61.0 63.5 58.7

RoBERTa-wwm-ext-large 64.9 60.3 64.4 59.2
{0} in Table 6.5 66.4 61.6 65.0 60.3
{12} in Table 6.5 67.1 62.9 67.3 62.3

Table 6.10: Average F1 (%) and F1c (%) on DialogRE.

architecture on DialogRE. We compare the performance of methods that use

different weights for parameter initialization except for the randomly initialized

classification layer. We achieve +2.9% in F1 and +3.1% in F1c on DialogRE

(Table 6.10). The metric F1c is used to encourage a model to identify relations

between arguments as early as possible rather than after reading the whole

dialogue. Introducing C3 alone also allows us to achieve a slight gain over the

relation extraction baseline. It might be interesting to investigate the relevance

between document-level relation extraction and machine reading comprehension

for further performance boost.

6.6 Related Work

6.6.1 Contextualized Knowledge Extraction

Here we primarily discuss external contextualized knowledge that is not directly

relevant with a target task as retrieving related pieces of evidence from an ex-

ternal source for each instances of a target task is not our focus. A common

solution to obtain external contextualized knowledge is to utilize existing knowl-

edge bases via distant supervision (Ye et al., 2019). We extract contextualized

knowledge from scripts, wherein contexts (i.e., scenes) are naturally aligned with
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verbal-nonverbal pairs to avoid noise. Besides, we focus on improving MRC

with verbal-nonverbal knowledge, which is seldom studied.

Our work is also related to commonsense knowledge extraction, which relies

on human-annotated triples (Xu et al., 2018a; Bosselut et al., 2019), high-precision

syntactic or semantic patterns (Zhang et al., 2020; Zhou et al., 2020) specific to

each relation, or existing lexical databases (Tandon et al., 2014, 2015). By contrast,

we skip the step of offering a name of the relation between phrases and situate

structured knowledge in its context. Our language-independent knowledge

extraction does not require any training data and does not rely on a high-quality

semantic lexicon or a syntactic parser, which is not always available.

6.6.2 Weak Supervision and Semi-Supervised Learning for

MRC

As it is expensive and time-consuming to crowdsource or collect a large-scale,

high-quality dataset, weak supervision has received much attention throughout

the MRC literature. Various forms of weak supervision are studied, mostly based

on existing resources such as pre-trained semantic/syntactic parsers (Smith et al.,

2015; Wang et al., 2015; Liu et al., 2017) or natural language inference systems (Pu-

jari and Goldwasser, 2019; Wang et al., 2019), knowledge bases (Wang and Jiang,

2019; Yang et al., 2019), and linguistic lexicons (Sun et al., 2019c). Compared to

previous work, we focus on generating large-scale weakly-labeled data using the

contextualized knowledge automatically extracted from unstructured corpora.

Previous semi-supervised methods that leverage internal or external unla-
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beled texts usually generate question and answer based on the content of the

same sentence (Yang et al., 2017; Wang et al., 2018b; Dhingra et al., 2018). Besides

the unlabeled texts, previous studies (Yuan et al., 2017; Yu et al., 2018; Zhang

and Bansal, 2019; Zhu et al., 2019; Dong et al., 2019; Alberti et al., 2019; Asai and

Hajishirzi, 2020) also heavily rely on the labeled instances of the target MRC

task for data augmentation. In comparison, we generate weakly-labeled MRC

instances without using any task-specific patterns or labeled data to improve

MRC tasks that require substantial general world knowledge. Another line of

work develops unsupervised approaches (Lewis et al., 2019; Li et al., 2020; Fabbri

et al., 2020) for extractive MRC tasks. However, there is still a large performance

gap between unsupervised and state-of-the-art supervised methods.

6.6.3 Knowledge Utilization

Our teacher-student paradigm for knowledge utilization is most related to multi-

domain teacher-student training for automatic speech recognition (You et al.,

2019) and machine translation (Wang et al., 2020). Instead of clean domain-

specific human-labeled data, each of our teacher models is trained with weakly-

labeled data. Due to the introduction of large amounts of weakly-labeled data,

the data of the target MRC task (with hard or soft labels) is used during all the

fine-tuning stages of both teacher and student models.
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6.7 Chapter Summary

This chapter introduces how to extract contextualized verbal-nonverbal knowl-

edge from film/TV scripts and use this kind of knowledge to improve machine

reading comprehension. We propose to situate structured knowledge in a context

to implicitly represent the relations between phrases, instead of relying on a pre-

defined set of relations. We propose a two-stage fine-tuning strategy to use the

large-scale weakly-labeled data and employ a teacher-student paradigm to inject

multiple types of contextualized knowledge into a single student model. Exper-

imental results show that our method outperforms a state-of-the-art baseline

by +4.3% in accuracy on the multiple-choice MRC dataset C3. Finally, we show

the usefulness of the extracted knowledge for other MRC task and MRC-related

tasks such as document-level relation extraction.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this dissertation, we present our work in developing approaches to improve

non-extractive MRC and the creation of datasets that pose new challenges for

MRC systems. In this chapter, we summarize the contributions of this disserta-

tion and discuss directions for future work.

7.1 Summary of Contributions

In Chapter 3, we propose three general strategies to improve non-extractive

machine reading comprehension: BACK AND FORTH READING, HIGHLIGHTING,

and SELF-ASSESSMENT. By fine-tuning a pre-trained language model with our

proposed strategies on the largest general domain multiple-choice MRC dataset

RACE, we obtain a 5.8% absolute increase in accuracy over the previous best

result achieved by the same pre-trained model fine-tuned on RACE without

the use of strategies. We further fine-tune the resulting model on a target MRC

task, leading to an absolute improvement of 6.2% in average accuracy over

previous state-of-the-art approaches on six representative non-extractive MRC

datasets from different domains. These results demonstrate the effectiveness

of our proposed strategies and the versatility and general applicability of our

fine-tuned models that incorporate these strategies.

In Chapter 4, we present DREAM, the first dialogue-based multiple-choice

reading comprehension dataset. Collected from English-as-a-foreign-language

examinations designed by human experts to evaluate the comprehension level of
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Chinese learners of English, our dataset contains 10,197 multiple-choice questions

for 6,444 dialogues. DREAM is the first dataset to focus on in-depth multi-turn

multi-party dialogue understanding and is likely to present significant challenges

for reading comprehension systems: 84% of answers are non-extractive, 85% of

questions require reasoning beyond a single sentence, and 34% of questions also

involve commonsense knowledge. We apply several popular neural reading

comprehension models that primarily exploit surface information within the text

and find them to, at best, just barely outperform a rule-based approach. We next

investigate the effects of incorporating dialogue structure and different kinds

of general world knowledge into both rule-based and (neural and non-neural)

machine learning-based reading comprehension models. Experimental results

on the DREAM dataset show the effectiveness of dialogue structure and general

world knowledge.

In Chapter 5, we present the first free-form multiple-Choice Chinese machine

reading Comprehension dataset (C3), containing 13,369 documents (dialogues or

more formally written mixed-genre texts) and their associated 19,577 multiple-

choice free-form questions collected from Chinese-as-a-second-language exami-

nations. We present a comprehensive analysis of the prior knowledge needed

for these real-world problems. We implement rule-based and popular neural

methods and find that there is still a significant performance gap between the

best performing model and human readers, especially on problems that require

prior knowledge. We further study the effects of distractor plausibility and

data augmentation based on translated relevant datasets for English on model

performance. We expect C3 to present great challenges to existing systems as

answering 86.8% of questions requires both knowledge within and beyond the

accompanying document, and we hope that C3 can serve as a platform to study
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how to leverage various kinds of prior knowledge to better understand a given

written or orally oriented text.

In Chapter 6, we develop a method of utilizing contextualized verbal-

nonverbal knowledge extracted from film/TV scripts to improve machine read-

ing comprehension tasks that require tacit general world knowledge. Exper-

imental results show that our method outperforms a state-of-the-art baseline

by +4.3% in accuracy on C3. We also seek to transfer the knowledge to other

tasks by simply adapting the resulting model, yielding up to +7.8% in accu-

racy on translated MRC datasets such as DREAM and Cosmos QA and +2.9%

in F1 on a relation extraction dataset DialogRE that also involves document-

level reading comprehension, demonstrating the usefulness of contextualized

verbal-nonverbal knowledge for MRC.

7.2 Future Work

Downstream application. Compared with extractive MRC, fewer works have

been dedicated to the practical application of non-extractive multiple-choice

MRC. Besides formulating a target problem as an MRC task and directly apply-

ing MRC techniques, we can also explore ways of leveraging the intermediate

representations of MRC models when tackling problems that require language

understanding (e.g., in Chapter 6, we show that we can transfer knowledge

from a pre-trained MRC model to a relation extraction model) to apply MRC

techniques to a broader range of problems.

105



Explainability in machine meading comprehension. As the MRC research di-

rection evolves from comprehending explicitly expressed information to in-depth

understanding that requires advanced reading skills and prior world knowledge,

it becomes more challenging and critical than ever to develop techniques to

enable MRC models to deliver the answer explanation, on top of the ability to

arrive at the answer.

Long-text reading comprehension. The documents in most MRC research,

including the proposed and studied tasks in this dissertation, are short, typically

no longer than a few hundred words. Ultimately, we would like to create

reading comprehension systems that can achieve genuine human-level reading

comprehension performance, and one of the desired abilities is the ability of

reading long documents such as books. There is still a long way to go towards

long-text reading comprehension, as it is even unrealistic for most state-of-the-art

MRC systems to encode a book-length document.
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Cynthia Van Hee, Els Lefever, and Véronique Hoste. 2018. We usually don’t

123



like going to the dentist: Using common sense to detect irony on twitter.

Computational Linguistics, 44(4):793–832.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Proceedings of the NIPS, pages 5998–6008, Long Beach, CA.

Chao Wang and Hui Jiang. 2019. Explicit utilization of general knowledge in

machine reading comprehension. In Proceedings of the ACL, pages 2263–2272.

Hai Wang, Mohit Bansal, Kevin Gimpel, and David McAllester. 2015. Machine

comprehension with syntax, frames, and semantics. In Proceedings of the ACL,

pages 700–706.

Hai Wang, Dian Yu, Kai Sun, Jianshu Chen, Dong Yu, David McAllester, and Dan

Roth. 2019. Evidence sentence extraction for machine reading comprehension.

In Proceedings of the CoNLL, pages 696–707.

Lei Wang, Yan Wang, Deng Cai, Dongxiang Zhang, and Xiaojiang Liu. 2018a.

Translating a math word problem to a expression tree. In Proceedings of the

EMNLP, pages 1064–1069, Brussels, Belgium.

Liang Wang, Sujian Li, Wei Zhao, Kewei Shen, Meng Sun, Ruoyu Jia, and Jing-

ming Liu. 2018b. Multi-perspective context aggregation for semi-supervised

cloze-style reading comprehension. In Proceedings of the COLING, pages 857–

867.

Liang Wang, Meng Sun, Wei Zhao, Kewei Shen, and Jingming Liu. 2018c. Yuan-

fudao at SemEval-2018 task 11: Three-way attention and relational knowledge

for commonsense machine comprehension. In Proceedings of the SemEval, pages

758–762.

124



Shuohang Wang, Mo Yu, Shiyu Chang, and Jing Jiang. 2018d. A co-matching

model for multi-choice reading comprehension. In Proceedings of the ACL,

pages 1–6, Melbourne, Australia.

Yong Wang, Longyue Wang, Shuming Shi, Victor OK Li, and Zhaopeng Tu. 2020.

Go from the general to the particular: Multi-domain translation with domain

transformation networks. In Proceedings of the AAAI, pages 9233–9241.

Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel. 2018. Constructing

datasets for multi-hop reading comprehension across documents. Transactions

of the Association of Computational Linguistics, 6:287–302.

Georg Wiese, Dirk Weissenborn, and Mariana Neves. 2017. Neural domain

adaptation for biomedical question answering. In Proceedings of the CoNLL,

pages 281–289, Vancouver, Canada.

Morton E Winston, Roger Chaffin, and Douglas Herrmann. 1987. A taxonomy of

part-whole relations. Cognitive science, 11(4):417–444.

Fei Xia. 2000. The part-of-speech tagging guidelines for the Penn Chinese Tree-

bank (3.0). IRCS Technical Reports Series, pages 1–43.

Qizhe Xie, Guokun Lai, Zihang Dai, and Eduard Hovy. 2018. Large-scale cloze

test dataset created by teachers. In Proceedings of the EMNLP, pages 2344–2356,

Brussels, Belgium.

Frank F. Xu, Bill Yuchen Lin, and Kenny Zhu. 2018a. Automatic extraction

of commonsense LocatedNear knowledge. In Proceedings of the ACL, pages

96–101.

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie Cao, Yudong Li, Yechen Xu,

Kai Sun, Dian Yu, Cong Yu, Yin Tian, Qianqian Dong, Weitang Liu, Bo Shi,

125



Yiming Cui, Junyi Li, Jun Zeng, Rongzhao Wang, Weijian Xie, Yanting Li,

Yina Patterson, Zuoyu Tian, Yiwen Zhang, He Zhou, Shaoweihua Liu, Zhe

Zhao, Qipeng Zhao, Cong Yue, Xinrui Zhang, Zhengliang Yang, Kyle Richard-

son, and Zhenzhong Lan. 2020. CLUE: A chinese language understanding

evaluation benchmark. In Proceedings of the COLING, pages 4762–4772.

Yichong Xu, Jingjing Liu, Jianfeng Gao, Yelong Shen, and Xiaodong Liu. 2018b.

Dynamic fusion networks for machine reading comprehension. arXiv preprint,

cs.CL/1711.04964v2.

An Yang, Quan Wang, Jing Liu, Kai Liu, Yajuan Lyu, Hua Wu, Qiaoqiao She,

and Sujian Li. 2019. Enhancing pre-trained language representations with rich

knowledge for machine reading comprehension. In Proceedings of the ACL,

pages 2346–2357.

Zhilin Yang, Junjie Hu, Ruslan Salakhutdinov, and William Cohen. 2017. Semi-

supervised QA with generative domain-adaptive nets. In Proceedings of the

ACL, pages 1040–1050, Vancouver, Canada.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan

Salakhutdinov, and Christopher D Manning. 2018. HotpotQA: A dataset

for diverse, explainable multi-hop question answering. In Proceedings of the

EMNLP, pages 2369–2380, Brussels, Belgium.

Zhi-Xiu Ye, Qian Chen, Wen Wang, and Zhen-Hua Ling. 2019. Align, mask

and select: A simple method for incorporating commonsense knowledge into

language representation models. arXiv preprint, cs.CL/1908.06725v5.

Wen-tau Yih, Ming-Wei Chang, Christopher Meek, and Andrzej Pastusiak. 2013.

126



Question answering using enhanced lexical semantic models. In Proceedings of

the ACL, pages 1744–1753, Sofia, Bulgaria.

Zhao You, Dan Su, and Dong Yu. 2019. Teach an all-rounder with experts in

different domains. In Proceedings of the ICASSP, pages 6425–6429.

Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Moham-

mad Norouzi, and Quoc V Le. 2018. QANet: Combining local convolution

with global self-attention for reading comprehension. In Proceedings of the

ICLR.

Dian Yu, Kai Sun, Claire Cardie, and Dong Yu. 2020. Dialogue-based relation

extraction. In Proceedings of the ACL, pages 4927–4940.

Xingdi Yuan, Tong Wang, Caglar Gulcehre, Alessandro Sordoni, Philip Bachman,

Saizheng Zhang, Sandeep Subramanian, and Adam Trischler. 2017. Machine

comprehension by text-to-text neural question generation. In Proceedings of the

RepL4NLP, pages 15–25.

Hongming Zhang, Daniel Khashabi, Yangqiu Song, and Dan Roth. 2020. Tran-

somcs: From linguistic graphs to commonsense knowledge. In Proceedings of

the IJCAI.

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng Gao, Kevin Duh, and

Benjamin Van Durme. 2018a. ReCoRD: Bridging the gap between hu-

man and machine commonsense reading comprehension. arXiv preprint,

cs.CL/1810.12885v1.

Shiyue Zhang and Mohit Bansal. 2019. Addressing semantic drift in question gen-

eration for semi-supervised question answering. In Proceedings of the EMNLP-

IJCNLP, pages 2495–2509.

127



Xiao Zhang, Ji Wu, Zhiyang He, Xien Liu, and Ying Su. 2018b. Medical exam

question answering with large-scale reading comprehension. In Proceedings of

the AAAI, pages 5706–5713, New Orleans, LA.

Zhuosheng Zhang and Hai Zhao. 2018. One-shot learning for question-answering

in Gaokao history challenge. In Proceedings of the COLING, pages 449–461, Santa

Fe, NM.

Chujie Zheng, Minlie Huang, and Aixin Sun. 2019. ChID: A large-scale Chinese

idiom dataset for cloze test. In Proceedings of the ACL, pages 778–787, Florence,

Italy.

Ben Zhou, Qiang Ning, Daniel Khashabi, and Dan Roth. 2020. Temporal common

sense acquisition with minimal supervision. In Proceedings of the ACL, pages

7579–7589.

Haichao Zhu, Li Dong, Furu Wei, Wenhui Wang, Bing Qin, and Ting Liu. 2019.

Learning to ask unanswerable questions for machine reading comprehension.

In Proceedings of the ACL, pages 4238–4248.

Haichao Zhu, Furu Wei, Bing Qin, and Ting Liu. 2018. Hierarchical attention

flow for multiple-choice reading comprehension. In Proceedings of the AAAI,

pages 6077–6084, New Orleans, LA.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun,

Antonio Torralba, and Sanja Fidler. 2015. Aligning books and movies: Towards

story-like visual explanations by watching movies and reading books. In

Proceedings of the IEEE ICCV, pages 19–27, Santiago, Chile.

128


